Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Geschichtswissenschaften
  • Working Papers of the Priority Programme 1859 – Experience and Expectation. Historical Foundations of Economic Behaviour
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Geschichtswissenschaften
  • Working Papers of the Priority Programme 1859 – Experience and Expectation. Historical Foundations of Economic Behaviour
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Geschichtswissenschaften
  • Working Papers of the Priority Programme 1859 – Experience and Expectation. Historical Foundations of Economic Behaviour
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Geschichtswissenschaften
  • Working Papers of the Priority Programme 1859 – Experience and Expectation. Historical Foundations of Economic Behaviour
  • View Item
2020-09Diskussionspapier DOI: 10.18452/21910
On the Efficiency of German Growth Forecasts: An Empirical Analysis Using Quantile Random Forests
Foltas, Alexander
Pierdzioch, Christian
Philosophische Fakultät
We use quantile random forests (QRF) to study the efficiency of the growth forecasts published by three leading German economic research institutes for the sample period from 1970 to 2017. To this end, we use a large array of predictors, including topics extracted by means of computational-linguistics tools from the business-cycle reports of the institutes, to model the information set of the institutes. We use this array of predictors to estimate the quantiles of the conditional distribution of the forecast errors made by the institutes, and then fit a skewed t-distribution to the estimated quantiles. We use the resulting density forecasts to compute the log probability score of the predicted forecast errors. Based on an extensive insample and out-of-sample analysis, we find evidence, particularly in the case of longer-term forecasts, against the null hypothesis of strongly efficient forecasts. We cannot reject weak efficiency of forecasts.
Files in this item
Thumbnail
SPPWP_21_2020_Foltas_Pierdzioch.pdf — Adobe PDF — 1.238 Mb
MD5: bb76006685a30dd27a891071c388c496
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/21910
Permanent URL
https://doi.org/10.18452/21910
HTML
<a href="https://doi.org/10.18452/21910">https://doi.org/10.18452/21910</a>