Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Geschichtswissenschaften
  • Working Papers of the Priority Programme 1859 – Experience and Expectation. Historical Foundations of Economic Behaviour
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Geschichtswissenschaften
  • Working Papers of the Priority Programme 1859 – Experience and Expectation. Historical Foundations of Economic Behaviour
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Geschichtswissenschaften
  • Working Papers of the Priority Programme 1859 – Experience and Expectation. Historical Foundations of Economic Behaviour
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Institut für Geschichtswissenschaften
  • Working Papers of the Priority Programme 1859 – Experience and Expectation. Historical Foundations of Economic Behaviour
  • View Item
2020-10Diskussionspapier DOI: 10.18452/22014
German Forecasters’ Narratives – How Informative are German Business Cycle Forecast Reports?
Müller, Karsten
Philosophische Fakultät
Based on German business cycle forecast reports covering 10 German institutions for the period 1993–2017, the paper analyses the information content of German forecasters’ narratives for German business cycle forecasts. The paper applies textual analysis to convert qualitative text data into quantitative sentiment indices. First, a sentiment analysis utilizes dictionary methods and text regression methods, using recursive estimation. Next, the paper analyses the different characteristics of sentiments. In a third step, sentiment indices are used to test the efficiency of numerical forecasts. Using 12-month-ahead fixed horizon forecasts, fixed-effects panel regression results suggest some informational content of sentiment indices for growth and inflation forecasts. Finally, a forecasting exercise analyses the predictive power of sentiment indices for GDP growth and inflation. The results suggest weak evidence, at best, for in-sample and out-of-sample predictive power of the sentiment indices.
Files in this item
Thumbnail
SPPWP_23_2020_Mueller.pdf — Adobe PDF — 2.101 Mb
MD5: 78dfb386a8217247999011249ac06020
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/22014
Permanent URL
https://doi.org/10.18452/22014
HTML
<a href="https://doi.org/10.18452/22014">https://doi.org/10.18452/22014</a>