Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2019-11-06Zeitschriftenartikel DOI: 10.18452/22233
Identifying Heterogeneity in Dynamic Panel Models with Individual Parameter Contribution Regression
Arnold, Manuel cc
Oberski, Daniel cc
Brandmaier, Andreas cc
Voelkle, Manuel cc
Lebenswissenschaftliche Fakultät
Dynamic panel models are a popular approach to study interrelationships between repeatedly measured variables. Often, dynamic panel models are specified and estimated within a structural equation modeling (SEM) framework. An endemic problem threatening the validity of such models is unmodelled heterogeneity. Recently, individual parameter contribution (IPC) regression was proposed as a flexible method to study heterogeneity in SEM parameters as a function of observed covariates. In the present paper, we derive how IPCs can be calculated for general maximum likelihood estimates and evaluate the performance of IPC regression to estimate group differences in dynamic panel models in discrete and continuous time. We show that IPC regression can be slightly biased in samples with large group differences and present a bias correction procedure. IPC regression showed generally promising results for discrete time models. However, due to highly nonlinear parameter constraints, caution is indicated when applying IPC regression to continuous time models.
Files in this item
Thumbnail
Identifying Heterogeneity in Dynamic Panel Models with Individual Parameter Contribution Regression.pdf — Adobe PDF — 1.289 Mb
MD5: 8d564cd9ef1942ec3cb21936cb189a1b
Notes
This article was supported by the Open Access Publication Fund of Humboldt-Universität zu Berlin.
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/22233
Permanent URL
https://doi.org/10.18452/22233
HTML
<a href="https://doi.org/10.18452/22233">https://doi.org/10.18452/22233</a>