Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2020-12-14Dissertation DOI: 10.18452/22207
Using Grazing Incidence Small-Angle X-Ray Scattering (GISAXS) for Semiconductor Nanometrology and Defect Quantification
Pflüger, Mika cc
Mathematisch-Naturwissenschaftliche Fakultät
Hintergrund: Die Entwicklung von Nanotechnologien und insbesondere integrierten Schaltkreisen beruht auf dem Verständnis von Struktur und Funktion auf der Nanoskala, wofür exakte Messungen erforderlich sind. Kleinwinkel-Röntgenstreuung unter streifendem Einfall (GISAXS) ist eine Methode zur schnellen, berührungs- und zerstörungsfreien dimensionellen Messung von nanostrukturierten Oberflächen. Ziele: Es soll die Möglichkeit untersucht werden, die zunehmend komplexeren Proben aus Wissenschaft und Industrie mit Hilfe von GISAXS präzise zu vermessen. Ein weiteres Ziel ist es, Messtargets aus der Halbleiter-Qualitätskontrolle mit einer Größe von ca. 40x40 µm² zu messen, deren Signal typischerweise nicht zugänglich ist, weil ein Bereich von ca. 1x20 mm² auf einmal beleuchtet wird. Methoden: Synchrotron-basierte GISAXS-Messungen verschiedener Proben werden mit Hilfe einer Fourier-Konstruktion, der "distorted wave Born approximation" und einem Maxwell-Gleichungs-Löser basierend auf finiten Elementen analysiert. Ergebnisse: Aus GISAXS-Messungen kann die Linienform von Gittern mit einer Periode von 32 nm rekonstruiert werden und sie weicht weniger als 2 nm von Referenzmessungen ab. Eine sorgfältige Bayes'sche Unsicherheitsanalyse zeigt jedoch, dass wichtige dimensionelle Parameter innerhalb der Unsicherheiten nicht übereinstimmen. Für die Messung von kleinen Gittertargets entwerfe ich ein neuartiges Probendesign, bei dem das Target in Bezug auf die umgebenden Strukturen gedreht wird, und stelle fest, dass dadurch parasitäre Streuung effizient unterdrückt wird. Fazit: GISAXS-Messungen von komplexen Nanostrukturen und kleinen Targets sind möglich, jedoch würde GISAXS enorm von effizienteren Simulationsmethoden profitieren, die alle relevanten Effekte wie Rauhigkeit und Randeffekte einbeziehen. Hier gibt es vielversprechende theoretische Ansätze, so dass GISAXS eine zusätzliche Methode für die Halbleiter-Qualitätskontrolle werden könnte.
 
Background. The development of nanotechnology such as integrated circuits relies on an understanding of structure and function at the nanoscale, for which reliable and exact measurements are needed. Grazing-incidence small angle X-ray scattering (GISAXS) is a versatile method for the fast, contactless and destruction-free measurement of sizes and shapes of nanostructures on surfaces. Aims. A goal of this work is to investigate the possibility of precisely measuring the increasingly complex samples produced in science and industry using GISAXS. A second objective is to measure targets used in semiconductor quality control with a size of approx. 40x40 µm², whose signal is typically not accessible because an area of approx. 1x20 mm² is illuminated at once. Methods. I take synchrotron-based GISAXS measurements and analyze them using reciprocal space construction, the distorted wave born approximation, and a solver for Maxwell's equations based on finite elements. Results. I find that the line shape of gratings with a period of 32 nm can be reconstructed from GISAXS measurements and the results deviate less than 2 nm from reference measurements; however, a careful Bayesian uncertainty analysis shows that key dimensional parameters do not agree within the uncertainties. For the measurement of small grating targets, I create a novel sample design where the target is rotated with respect to the surrounding structures and find that this efficiently suppresses parasitic scattering. Conclusions. I show that GISAXS measurements of complex nanostructures and small targets are possible, and I highlight that further development of GISAXS would benefit tremendously from efficient simulation methods which describe all relevant effects such as roughness and edge effects. Promising theoretical approaches exist, so that GISAXS has the potential to become an additional method in the toolkit of semiconductor quality control.
 
Files in this item
Thumbnail
dissertation_pflueger_mika.pdf — Adobe PDF — 24.48 Mb
MD5: 1d7e171f876c2c52777c56fe51ce23e4
References
Is Supplemented By: https://doi.org/10.18452/21660
Is Supplemented By: https://doi.org/10.24433/CO.0375205.v1
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/22207
Permanent URL
https://doi.org/10.18452/22207
HTML
<a href="https://doi.org/10.18452/22207">https://doi.org/10.18452/22207</a>