Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2020-12-18Kumulative Dissertation DOI: 10.18452/22175
Modelling the Evolution of Ice-rich Permafrost Landscapes in Response to a Warming Climate
Nitzbon, Jan
Mathematisch-Naturwissenschaftliche Fakultät
Permafrost ist ein Bestandteil der Kryosphäre der Erde, der für Ökosysteme und Infrastruktur in der Arktis von Bedeutung ist und auch eine Schlüsselrolle im globalen Kohlenstoffkreislauf einnimmt. Das Auftauen von Permafrost infolge einer Klimaerwärmung zu projizieren ist mit sehr großen Unsicherheiten behaftet, da großskalige Klimamodelle entscheidende Komplexitäten von Permafrostlandschaften nicht berücksichtigen. Insbesondere bleiben in diesen Modellen Auftauprozesse in eisreichem Permafrost unberücksichtigt, welche weitreichende Landschaftsveränderungen – sogenannter Thermokarst – hervorrufen. Im Rahmen dieser Dissertation habe ich ein numerisches Modell entwickelt, um Auftauprozesse in eisreichen Permafrostlandschaften zu untersuchen, und habe es angewendet, um verbesserte Projektionen darüber zu erhalten, wie viel Permafrost infolge einer Klimaerwärmung auftauen würde. Der Schwerpunkt meiner Forschung lag auf besonders kalten, eis- und kohlenstoffreichen Permafrostablagerungen in der nordostsibirischen Arktis. In drei Forschungsartikeln habe ich gezeigt, dass der neuartige Modellierungsansatz in From von lateral gekoppelten “Kacheln” verwendet werden kann, um die Entwicklung von eisreichen Permafrostlandschaften realistisch zu simulieren. Anhand numerischer Simulationen habe ich gezeigt, dass der kleinskalige laterale Transport von Wärme, Wasser, Schnee und Sediment die Dynamik von Permafrostlandschaften sowie die Menge des aufgetauten Permafrosts unter Klimaerwärmungsszenarien entscheidend beeinflusst. Weiterhin habe ich gezeigt, dass in Simulationen, die Thermokarstprozesse berücksichtigen, wesentlich mehr Kohlenstoff vom Auftauen des Permafrosts betroffen ist, als in solchen, in denen eisreiche Ablagerungen unberücksichtigt bleiben. Insgesamt stellt die in dieser Dissertation dargelegte Forschungsarbeit einen substantiellen Fortschritt bezüglich einer realistischeren Einschätzung der Dynamik eisreicher Permafrostlandschaften mittels numerischer Modelle dar.
 
Permafrost is a component of Earth's cryosphere which is of importance for ecosystems and infrastructure in the Arctic, and plays a key role in the global carbon cycle. Large-scale climate models reveal high uncertainties in projections of how much permafrost would thaw in response to climate warming scenarios, since they do not represent key complexities of permafrost environments. In particular, large-scale models do not take into account thaw processes in ice-rich permafrost which cause widespread landscape change referred to as thermokarst. For this thesis, I have developed a numerical model to investigate thaw processes in ice-rich permafrost landscapes, and I have used it to obtain improved projections of how much permafrost would thaw in response to climate warming. The focus of my research was on cold, ice- and carbon-rich permafrost deposits in the northeast Siberian Arctic, and on landscapes characterized by ice-wedge polygons. In three closely interrelated research articles, I have demonstrated that the novel modelling approach of laterally coupled ''tiles'' can be used to realistically simulate the evolution of ice-rich permafrost landscapes. The numerical simulations have revealed that small-scale lateral transport of heat, water, snow, and sediment crucially affect the dynamics of permafrost landscapes and how much permafrost would thaw under climate warming scenarios. My research revealed that substantially more permafrost carbon is affected by thaw in numerical simulations which take into account thermokarst processes, than in simulations which lack a representation of excess ice. These results suggest that conventional large-scale models used for future climate projections might considerably underestimate permafrost thaw and associated carbon-cycle feedbacks. Overall, the research presented in this thesis constitutes a major progress towards the realistic assessment of ice-rich permafrost landscape dynamics using numerical models.
 
Files in this item
Thumbnail
dissertation_nitzbon_jan.pdf — Adobe PDF — 36.93 Mb
MD5: 352c87d16684951b9cbc4a4899800018
References
Has Part: https://doi.org/10.5194/tc-13-1089-2019
Has Part: https://doi.org/10.1038/s41467-020-15725-8
Has Part: https://doi.org/10.5194/tc-2020-137
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/22175
Permanent URL
https://doi.org/10.18452/22175
HTML
<a href="https://doi.org/10.18452/22175">https://doi.org/10.18452/22175</a>