Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Forschungsdaten
  • Software
  • View Item
  • edoc-Server Home
  • Forschungsdaten
  • Software
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Forschungsdaten
  • Software
  • View Item
  • edoc-Server Home
  • Forschungsdaten
  • Software
  • View Item
2021-01-27Software DOI: 10.18452/22346
octAFEM3D software package for PhD thesis „Adaptive least-squares finite element method with optimal convergence rates“
Bringmann, Philipp
Mathematisch-Naturwissenschaftliche Fakultät
Das octAFEM3D Softwarepaket dient der numerischen Lösung von partiellen Differentialgleichungen. Drei lineare Modellprobleme in drei Raumdimensionen können mit einer Least-Squares Finiten-Elemente-Methode niedrigsten Polynomgrades gelöst werden. Die Approximation von inhomogenen Randdaten ist möglich. Die adaptive Netzverfeinerung wird mit einer kollektiven Markierungsstrategie umgesetzt. Die Implementierung basiert auf dem AFEM Softwarepaket der Arbeitsgruppe der Numerischen Mathematik von Prof. Carsten Carstensen an der Humboldt-Universität zu Berlin. Die Programme wurden implementiert und getestet für die Matlab Version 9.6.0.1072779 (R2019a) und Octave Version 5.1.0. Dieses Softwarepaket ist Teil der Dissertation „Adaptive least-squares finite element method with optimal convergence rates“ von Philipp Bringmann an der Humboldt-Universität zu Berlin unter der Betreuung von Prof. Carsten Carstensen.
 
This is the octAFEM3D package for the numerical solution of partial differential equations. Three linear model problems in three spatial dimensions can be solved by a lowest-order least-squares finite element method. The approximation of inhomogeneous boundary conditions is included. Adaptive mesh-refinement is realised with a collective marking strategy. The software is derived from the AFEM package of the numerical analysis working group of Prof. Carsten Carstensen at Humboldt-Universität zu Berlin. The code is implemented and tested for Matlab 9.6.0.1072779 (R2019a) and Octave 5.1.0. This software package is part of the PhD thesis „Adaptive least-squares finite element method with optimal convergence rates“ by Philipp Bringmann at Humboldt-Universität zu Berlin under the supervision of Prof. Carsten Carstensen.
 
Files in this item
octafem3d.zip — ZIP file — 98.13 Kb
Software-Paket
MD5: 79e41af748bd0db546510cf2ae806ed4
Notes
This work was supported by the Deutsche Forschungsgemeinschaft in the Priority Program 1748 ‚Reliable simulation techniques in solid mechanics. Development of non-standard discretization methods, mechanical and mathematical analysis’ under the project ‚Foundation and application of generalized mixed FEM towards nonlinear problems in solid mechanics‘. The files triangulation/Node.m and triangulation/Simplex.m are Matlab implementations of the corresponding classes from C. T. Traxler „An algorithm for adaptive mesh refinement in n dimensions.“ Computing, 59(2):115-137, 1997. The remaining files are provided under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 or (at your option) any later version. See LICENSE.md for further details.
References
Is Part Of: https://doi.org/10.18452/22350
Cite
BibTeX
EndNote
RIS
GNU General Public License Version 3.0
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/22346
Permanent URL
https://doi.org/10.18452/22346
HTML
<a href="https://doi.org/10.18452/22346">https://doi.org/10.18452/22346</a>