Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2021-01-29Dissertation DOI: 10.18452/22324
Towards accurate and efficient live cell imaging data analysis
Han, Hongqing
Lebenswissenschaftliche Fakultät
Dynamische zelluläre Prozesse wie Zellzyklus, Signaltransduktion oder Transkription zu analysieren wird Live-cell-imaging mittels Zeitraffermikroskopie verwendet. Um nun aber Zellabstammungsbäume aus einem Zeitraffervideo zu extrahieren, müssen die Zellen segmentiert und verfolgt werden können. Besonders hier, wo lebende Zellen über einen langen Zeitraum betrachtet werden, sind Fehler in der Analyse fatal: Selbst eine extrem niedrige Fehlerrate kann sich amplifizieren, wenn viele Zeitpunkte aufgenommen werden, und damit den gesamten Datensatz unbrauchbar machen. In dieser Arbeit verwenden wir einen einfachen aber praktischen Ansatz, der die Vorzüge der manuellen und automatischen Ansätze kombiniert. Das von uns entwickelte Live-cell-Imaging Datenanalysetool ‘eDetect’ ergänzt die automatische Zellsegmentierung und -verfolgung durch Nachbearbeitung. Das Besondere an dieser Arbeit ist, dass sie mehrere interaktive Datenvisualisierungsmodule verwendet, um den Benutzer zu führen und zu unterstützen. Dies erlaubt den gesamten manuellen Eingriffsprozess zu rational und effizient zu gestalten. Insbesondere werden zwei Streudiagramme und eine Heatmap verwendet, um die Merkmale einzelner Zellen interaktiv zu visualisieren. Die Streudiagramme positionieren ähnliche Objekte in unmittelbarer Nähe. So kann eine große Gruppe ähnlicher Fehler mit wenigen Mausklicks erkannt und korrigiert werden, und damit die manuellen Eingriffe auf ein Minimum reduziert werden. Die Heatmap ist darauf ausgerichtet, alle übersehenen Fehler aufzudecken und den Benutzern dabei zu helfen, bei der Zellabstammungsrekonstruktion schrittweise die perfekte Genauigkeit zu erreichen. Die quantitative Auswertung zeigt, dass eDetect die Genauigkeit der Nachverfolgung innerhalb eines akzeptablen Zeitfensters erheblich verbessern kann. Beurteilt nach biologisch relevanten Metriken, übertrifft die Leistung von eDetect die derer Tools, die den Wettbewerb ‘Cell Tracking Challenge’ gewonnen haben.
 
Live cell imaging based on time-lapse microscopy has been used to study dynamic cellular behaviors, such as cell cycle, cell signaling and transcription. Extracting cell lineage trees out of a time-lapse video requires cell segmentation and cell tracking. For long term live cell imaging, data analysis errors are particularly fatal. Even an extremely low error rate could potentially be amplified by the large number of sampled time points and render the entire video useless. In this work, we adopt a straightforward but practical design that combines the merits of manual and automatic approaches. We present a live cell imaging data analysis tool `eDetect', which uses post-editing to complement automatic segmentation and tracking. What makes this work special is that eDetect employs multiple interactive data visualization modules to guide and assist users, making the error detection and correction procedure rational and efficient. Specifically, two scatter plots and a heat map are used to interactively visualize single cells' visual features. The scatter plots position similar results in close vicinity, making it easy to spot and correct a large group of similar errors with a few mouse clicks, minimizing repetitive human interventions. The heat map is aimed at exposing all overlooked errors and helping users progressively approach perfect accuracy in cell lineage reconstruction. Quantitative evaluation proves that eDetect is able to largely improve accuracy within an acceptable time frame, and its performance surpasses the winners of most tasks in the `Cell Tracking Challenge', as measured by biologically relevant metrics.
 
Files in this item
Thumbnail
dissertation_han_hongqing.pdf — Adobe PDF — 20.53 Mb
MD5: 2383a5ba8ccd8a9207ff871f17dca1da
Cite
BibTeX
EndNote
RIS
(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/22324
Permanent URL
https://doi.org/10.18452/22324
HTML
<a href="https://doi.org/10.18452/22324">https://doi.org/10.18452/22324</a>