Show simple item record

2021-02-05Zeitschriftenartikel DOI: 10.18452/22653
Least-Squares Finite Element Method for a Meso-Scale Model of the Spread of COVID-19
dc.contributor.authorBertrand, Fleurianne
dc.contributor.authorPirch, Emilie
dc.date.accessioned2021-03-30T18:24:41Z
dc.date.available2021-03-30T18:24:41Z
dc.date.issued2021-02-05none
dc.date.updated2021-03-02T19:42:38Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/23258
dc.description.abstractThis paper investigates numerical properties of a flux-based finite element method for the discretization of a SEIQRD (susceptible-exposed-infected-quarantined-recovered-deceased) model for the spread of COVID-19. The model is largely based on the SEIRD (susceptible-exposed-infected-recovered-deceased) models developed in recent works, with additional extension by a quarantined compartment of the living population and the resulting first-order system of coupled PDEs is solved by a Least-Squares meso-scale method. We incorporate several data on political measures for the containment of the spread gathered during the course of the year 2020 and develop an indicator that influences the predictions calculated by the method. The numerical experiments conducted show a promising accuracy of predictions of the space-time behavior of the virus compared to the real disease spreading data.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectCOVID-19eng
dc.subjectleast-squares finite element methodeng
dc.subjectsusceptible-exposed-infected-quarantined-recovered-deceased (SEIQRD)eng
dc.subject.ddc004 Informatiknone
dc.titleLeast-Squares Finite Element Method for a Meso-Scale Model of the Spread of COVID-19none
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/23258-3
dc.identifier.doihttp://dx.doi.org/10.18452/22653
dc.type.versionpublishedVersionnone
local.edoc.pages22none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn2079-3197
dcterms.bibliographicCitation.doi10.3390/computation9020018none
dcterms.bibliographicCitation.journaltitleComputationnone
dcterms.bibliographicCitation.volume9none
dcterms.bibliographicCitation.issue2none
dcterms.bibliographicCitation.articlenumber18none
dcterms.bibliographicCitation.originalpublishernameMDPInone
dcterms.bibliographicCitation.originalpublisherplaceBaselnone
bua.import.affiliationBertrand, Fleurianne; Department of Computational Mathematics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany, fb@math.hu-berlin.denone
bua.import.affiliationPirch, Emilie; Department of Computational Mathematics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany, pirchemi@math.hu-berlin.denone
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record