Least-Squares Finite Element Method for a Meso-Scale Model of the Spread of COVID-19
dc.contributor.author | Bertrand, Fleurianne | |
dc.contributor.author | Pirch, Emilie | |
dc.date.accessioned | 2021-03-30T18:24:41Z | |
dc.date.available | 2021-03-30T18:24:41Z | |
dc.date.issued | 2021-02-05 | none |
dc.date.updated | 2021-03-02T19:42:38Z | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/23258 | |
dc.description.abstract | This paper investigates numerical properties of a flux-based finite element method for the discretization of a SEIQRD (susceptible-exposed-infected-quarantined-recovered-deceased) model for the spread of COVID-19. The model is largely based on the SEIRD (susceptible-exposed-infected-recovered-deceased) models developed in recent works, with additional extension by a quarantined compartment of the living population and the resulting first-order system of coupled PDEs is solved by a Least-Squares meso-scale method. We incorporate several data on political measures for the containment of the spread gathered during the course of the year 2020 and develop an indicator that influences the predictions calculated by the method. The numerical experiments conducted show a promising accuracy of predictions of the space-time behavior of the virus compared to the real disease spreading data. | eng |
dc.language.iso | eng | none |
dc.publisher | Humboldt-Universität zu Berlin | |
dc.rights | (CC BY 4.0) Attribution 4.0 International | ger |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | COVID-19 | eng |
dc.subject | least-squares finite element method | eng |
dc.subject | susceptible-exposed-infected-quarantined-recovered-deceased (SEIQRD) | eng |
dc.subject.ddc | 004 Informatik | none |
dc.title | Least-Squares Finite Element Method for a Meso-Scale Model of the Spread of COVID-19 | none |
dc.type | article | |
dc.identifier.urn | urn:nbn:de:kobv:11-110-18452/23258-3 | |
dc.identifier.doi | http://dx.doi.org/10.18452/22653 | |
dc.type.version | publishedVersion | none |
local.edoc.pages | 22 | none |
local.edoc.type-name | Zeitschriftenartikel | |
local.edoc.container-type | periodical | |
local.edoc.container-type-name | Zeitschrift | |
dc.description.version | Peer Reviewed | none |
dc.identifier.eissn | 2079-3197 | |
dcterms.bibliographicCitation.doi | 10.3390/computation9020018 | none |
dcterms.bibliographicCitation.journaltitle | Computation | none |
dcterms.bibliographicCitation.volume | 9 | none |
dcterms.bibliographicCitation.issue | 2 | none |
dcterms.bibliographicCitation.articlenumber | 18 | none |
dcterms.bibliographicCitation.originalpublishername | MDPI | none |
dcterms.bibliographicCitation.originalpublisherplace | Basel | none |
bua.import.affiliation | Bertrand, Fleurianne; Department of Computational Mathematics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany, fb@math.hu-berlin.de | none |
bua.import.affiliation | Pirch, Emilie; Department of Computational Mathematics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany, pirchemi@math.hu-berlin.de | none |
bua.department | Mathematisch-Naturwissenschaftliche Fakultät | none |