Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease
dc.contributor.author | Niu, Ben | |
dc.contributor.author | Wang, Weixiong | |
dc.contributor.author | Yuan, Zhibo | |
dc.contributor.author | Sederoff, Ronald | |
dc.contributor.author | Sederoff, Heike | |
dc.contributor.author | Chiang, Vincent L. | |
dc.contributor.author | Borriss, Rainer | |
dc.date.accessioned | 2021-04-09T06:56:43Z | |
dc.date.available | 2021-04-09T06:56:43Z | |
dc.date.issued | 2020-10-09 | none |
dc.date.updated | 2020-10-09T09:52:17Z | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/23301 | |
dc.description | This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin. | none |
dc.description.abstract | Major losses of crop yield and quality caused by soil-borne plant diseases have long threatened the ecology and economy of agriculture and forestry. Biological control using beneficial microorganisms has become more popular for management of soil-borne pathogens as an environmentally friendly method for protecting plants. Two major barriers limiting the disease-suppressive functions of biocontrol microbes are inadequate colonization of hosts and inefficient inhibition of soil-borne pathogen growth, due to biotic and abiotic factors acting in complex rhizosphere environments. Use of a consortium of microbial strains with disease inhibitory activity may improve the biocontrol efficacy of the disease-inhibiting microbes. The mechanisms of biological control are not fully understood. In this review, we focus on bacterial and fungal biocontrol agents to summarize the current state of the use of single strain and multi-strain biological control consortia in the management of soil-borne diseases. We discuss potential mechanisms used by microbial components to improve the disease suppressing efficacy. We emphasize the interaction-related factors to be considered when constructing multiple-strain biological control consortia and propose a workflow for assembling them by applying a reductionist synthetic community approach. | eng |
dc.language.iso | eng | none |
dc.publisher | Humboldt-Universität zu Berlin | |
dc.rights | (CC BY 4.0) Attribution 4.0 International | ger |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | microbial interaction | eng |
dc.subject | biological control agents | eng |
dc.subject | soil-borne disease | eng |
dc.subject | consortia | eng |
dc.subject | microbiome and community | eng |
dc.subject.ddc | 570 Biologie | none |
dc.title | Microbial Interactions Within Multiple-Strain Biological Control Agents Impact Soil-Borne Plant Disease | none |
dc.type | article | |
dc.identifier.urn | urn:nbn:de:kobv:11-110-18452/23301-9 | |
dc.identifier.doi | 10.3389/fmicb.2020.585404 | none |
dc.identifier.doi | http://dx.doi.org/10.18452/22694 | |
dc.type.version | publishedVersion | none |
local.edoc.pages | 16 | none |
local.edoc.type-name | Zeitschriftenartikel | |
local.edoc.container-type | periodical | |
local.edoc.container-type-name | Zeitschrift | |
dc.description.version | Peer Reviewed | none |
dc.identifier.eissn | 1664-302X | |
dcterms.bibliographicCitation.journaltitle | Frontiers in microbiology | none |
dcterms.bibliographicCitation.volume | 11 | none |
dcterms.bibliographicCitation.articlenumber | 585404 | none |
dcterms.bibliographicCitation.originalpublishername | Frontiers Media | none |
dcterms.bibliographicCitation.originalpublisherplace | Lausanne | none |
bua.import.affiliation | Niu, Ben; 1State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China | none |
bua.import.affiliation | Wang, Weixiong; 2College of Life Science, Northeast Forestry University, Harbin, China | none |
bua.import.affiliation | Yuan, Zhibo; 2College of Life Science, Northeast Forestry University, Harbin, China | none |
bua.import.affiliation | Sederoff, Ronald R.; 3Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States | none |
bua.import.affiliation | Sederoff, Heike; 4Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States | none |
bua.import.affiliation | Chiang, Vincent L.; 1State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China | none |
bua.import.affiliation | Borriss, Rainer; 5Institute of Biology, Humboldt University of Berlin, Berlin, Germany | none |
bua.department | Lebenswissenschaftliche Fakultät | none |