Zur Kurzanzeige

2020-10-21Zeitschriftenartikel DOI: 10.18452/22937
Distribution of the cholinergic nuclei in the brain of the weakly electric fish, Apteronotus leptorhynchus: Implications for sensory processing
dc.contributor.authorToscano‐Márquez, Brenda
dc.contributor.authorOboti, Livio
dc.contributor.authorHarvey-Girard, Erik
dc.contributor.authorMaler, Leonard
dc.contributor.authorKrahe, Rüdiger
dc.date.accessioned2021-06-03T09:02:37Z
dc.date.available2021-06-03T09:02:37Z
dc.date.issued2020-10-21none
dc.date.updated2021-02-22T13:26:09Z
dc.identifier.issn0021-9967
dc.identifier.urihttp://edoc.hu-berlin.de/18452/23612
dc.description.abstractAcetylcholine acts as a neurotransmitter/neuromodulator of many central nervous system processes such as learning and memory, attention, motor control, and sensory processing. The present study describes the spatial distribution of cholinergic neurons throughout the brain of the weakly electric fish, Apteronotus leptorhynchus, using in situ hybridization of choline acetyltransferase mRNA. Distinct groups of cholinergic cells were observed in the telencephalon, diencephalon, mesencephalon, and hindbrain. These included cholinergic cell groups typically identified in other vertebrate brains, for example, motor neurons. Using both in vitro and ex vivo neuronal tracing methods, we identified two new cholinergic connections leading to novel hypotheses on their functional significance. Projections to the nucleus praeeminentialis (nP) arise from isthmic nuclei, possibly including the nucleus lateralis valvulae (nLV) and the isthmic nucleus (nI). The nP is a central component of all electrosensory feedback pathways to the electrosensory lateral line lobe (ELL). We have previously shown that some neurons in nP, TS, and tectum express muscarinic receptors. We hypothesize that, based on nLV/nI cell responses in other teleosts and isthmic connectivity in A. leptorhynchus, the isthmic connections to nP, TS, and tectum modulate responses to electrosensory and/or visual motion and, in particular, to looming/receding stimuli. In addition, we found that the octavolateral efferent (OE) nucleus is the likely source of cholinergic fibers innervating the ELL. In other teleosts, OE inhibits octavolateral hair cells during locomotion. In gymnotiform fish, OE may also act on the first central processing stage and, we hypothesize, implement corollary discharge modulation of electrosensory processing during locomotion.eng
dc.description.sponsorshipCanada Foundation for Innovation http://dx.doi.org/10.13039/501100000196
dc.description.sponsorshipCanadian Institutes of Health Research http://dx.doi.org/10.13039/501100000024
dc.description.sponsorshipCanadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada http://dx.doi.org/10.13039/501100002790
dc.description.sponsorshipDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
dc.description.sponsorshipLe Fonds Québécois de la Recherche sur la Nature et les Technologies
dc.description.sponsorshipMerit Scholarship for Foreign Students
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectacetylcholineeng
dc.subjectelectrosensory systemeng
dc.subjectgymnotiformeng
dc.subjectneuromodulationeng
dc.subjecttract tracingeng
dc.subjectweakly electric fisheng
dc.subject.ddc570 Biologienone
dc.subject.ddc590 Tiere (Zoologie)none
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleDistribution of the cholinergic nuclei in the brain of the weakly electric fish, Apteronotus leptorhynchus: Implications for sensory processingnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/23612-8
dc.identifier.doihttp://dx.doi.org/10.18452/22937
dc.type.versionpublishedVersionnone
local.edoc.pages20none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn1096-9861
dcterms.bibliographicCitation.doi10.1002/cne.25058none
dcterms.bibliographicCitation.journaltitleThe journal of comparative neurologynone
dcterms.bibliographicCitation.volume529none
dcterms.bibliographicCitation.issue8none
dcterms.bibliographicCitation.originalpublishernameWiley-Lissnone
dcterms.bibliographicCitation.originalpublisherplaceNew York, NY [u.a.]none
dcterms.bibliographicCitation.pagestart1810none
dcterms.bibliographicCitation.pageend1829none
bua.import.affiliationToscano‐Márquez, Brenda: Department of Biology McGill University, Montreal Quebecnone
bua.import.affiliationOboti, Livio: Humboldt‐Universität zu Berlin, Institut für Biologie, Berlin Germanynone
bua.import.affiliationHarvey‐Girard, Erik: Department of Cellular and Molecular Medicine University of Ottawa, Ottawa Ontario Canadanone
bua.import.affiliationMaler, Leonard: Department of Cellular and Molecular Medicine University of Ottawa, Ottawa Ontario Canadanone
bua.import.affiliationKrahe, Rüdiger: Department of Biology McGill University Montreal Quebec; Humboldt‐Universität zu Berlin, Institut für Biologie, Berlin Germanynone
bua.departmentLebenswissenschaftliche Fakultätnone

Zur Kurzanzeige