Zur Kurzanzeige

2021-04-09Zeitschriftenartikel DOI: 10.18452/22982
Freely Behaving Mice Can Brake and Turn During Optogenetic Stimulation of the Mesencephalic Locomotor Region
dc.contributor.authorvan der Zouwen, Cornelis Immanuel
dc.contributor.authorBoutin, Joël
dc.contributor.authorFougère, Maxime
dc.contributor.authorFlaive, Aurélie
dc.contributor.authorVivancos, Mélanie
dc.contributor.authorSantuz, Alessandro
dc.contributor.authorAkay, Turgay
dc.contributor.authorSarret, Philippe
dc.contributor.authorRyczko, Dimitri
dc.date.accessioned2021-06-17T09:20:11Z
dc.date.available2021-06-17T09:20:11Z
dc.date.issued2021-04-09none
dc.date.updated2021-04-23T08:02:52Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/23648
dc.description.abstractA key function of the mesencephalic locomotor region (MLR) is to control the speed of forward symmetrical locomotor movements. However, the ability of freely moving mammals to integrate environmental cues to brake and turn during MLR stimulation is poorly documented. Here, we investigated whether freely behaving mice could brake or turn, based on environmental cues during MLR stimulation. We photostimulated the cuneiform nucleus (part of the MLR) in mice expressing channelrhodopsin in Vglut2-positive neurons in a Cre-dependent manner (Vglut2-ChR2-EYFP) using optogenetics. We detected locomotor movements using deep learning. We used patch-clamp recordings to validate the functional expression of channelrhodopsin and neuroanatomy to visualize the stimulation sites. In the linear corridor, gait diagram and limb kinematics were similar during spontaneous and optogenetic-evoked locomotion. In the open-field arena, optogenetic stimulation of the MLR evoked locomotion, and increasing laser power increased locomotor speed. Mice could brake and make sharp turns (~90°) when approaching a corner during MLR stimulation in the open-field arena. The speed during the turn was scaled with the speed before the turn, and with the turn angle. Patch-clamp recordings in Vglut2-ChR2-EYFP mice show that blue light evoked short-latency spiking in MLR neurons. Our results strengthen the idea that different brainstem neurons convey braking/turning and MLR speed commands in mammals. Our study also shows that Vglut2-positive neurons of the cuneiform nucleus are a relevant target to increase locomotor activity without impeding the ability to brake and turn when approaching obstacles, thus ensuring smooth and adaptable navigation. Our observations may have clinical relevance since cuneiform nucleus stimulation is increasingly considered to improve locomotion function in pathological states such as Parkinson’s disease, spinal cord injury, or stroke.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectlocomotioneng
dc.subjectspeedeng
dc.subjectbrakingeng
dc.subjectturningeng
dc.subjectmesencephalic locomotor regioneng
dc.subjectcuneiform nucleuseng
dc.subjectVglut2eng
dc.subjectoptogeneticseng
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleFreely Behaving Mice Can Brake and Turn During Optogenetic Stimulation of the Mesencephalic Locomotor Regionnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/23648-0
dc.identifier.doihttp://dx.doi.org/10.18452/22982
dc.type.versionpublishedVersionnone
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn1662-5110
dcterms.bibliographicCitation.doi10.3389/fncir.2021.639900none
dcterms.bibliographicCitation.journaltitleFrontiers in neural circuitsnone
dcterms.bibliographicCitation.volume15none
dcterms.bibliographicCitation.articlenumber639900none
dcterms.bibliographicCitation.originalpublishernameFrontiers Medianone
dcterms.bibliographicCitation.originalpublisherplaceLausannenone
bua.departmentKultur-, Sozial- und Bildungswissenschaftliche Fakultätnone

Zur Kurzanzeige