Show simple item record

2021-01-31Zeitschriftenartikel DOI: 10.18452/23082
Acclimation in plants – the Green Hub consortium
dc.contributor.authorKleine, Tatjana
dc.contributor.authorNägele, Thomas
dc.contributor.authorNeuhaus, H. Ekkehard
dc.contributor.authorSchmitz‐Linneweber, Christian
dc.contributor.authorFernie, Alisdair R.
dc.contributor.authorGeigenberger, Peter
dc.contributor.authorGrimm, Bernhard
dc.contributor.authorKaufmann, Kerstin
dc.contributor.authorKlipp, Edda
dc.contributor.authorMeurer, Jörg
dc.contributor.authorMöhlmann, Torsten
dc.contributor.authorMühlhaus, Timo
dc.contributor.authorNaranjo, Belén
dc.contributor.authorNickelsen, Joerg
dc.contributor.authorRichter, Andreas
dc.contributor.authorRuwe, Hannes
dc.contributor.authorSchroda, Michael
dc.contributor.authorSchwenkert, Serena
dc.contributor.authorTrentmann, Oliver
dc.contributor.authorWillmund, Felix
dc.contributor.authorZoschke, Reimo
dc.contributor.authorLeister, Dario
dc.date.accessioned2021-07-15T12:12:22Z
dc.date.available2021-07-15T12:12:22Z
dc.date.issued2021-01-31none
dc.date.updated2021-02-15T11:50:53Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/23745
dc.description.abstractAcclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to ‘smart breeding’ methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast‐related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.eng
dc.description.sponsorshipDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectacclimationeng
dc.subjectArabidopsiseng
dc.subjectChlamydomonaseng
dc.subjectCamelinaeng
dc.subjectTobaccoeng
dc.subjectgene expressioneng
dc.subjectsignallingeng
dc.subjectmetabolismeng
dc.subjectsystems biologyeng
dc.subjectadaptive laboratory evolutioneng
dc.subject.ddc580 Pflanzen (Botanik)none
dc.titleAcclimation in plants – the Green Hub consortiumnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/23745-8
dc.identifier.doihttp://dx.doi.org/10.18452/23082
dc.type.versionpublishedVersionnone
local.edoc.pages18none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dcterms.bibliographicCitation.doi10.1111/tpj.15144none
dcterms.bibliographicCitation.journaltitleThe Plant Journalnone
dcterms.bibliographicCitation.volume106none
dcterms.bibliographicCitation.issue1none
dcterms.bibliographicCitation.originalpublishernameWiley-Blackwellnone
dcterms.bibliographicCitation.originalpublisherplaceOxfordnone
dcterms.bibliographicCitation.pagestart23none
dcterms.bibliographicCitation.pageend40none
bua.import.affiliationKleine, Tatjana; Plant Molecular Biology Faculty of Biology Ludwig‐Maximilians‐Universität München Planegg‐Martinsried 82152 Germanynone
bua.import.affiliationNägele, Thomas; Plant Evolutionary Cell Biology Faculty of Biology Ludwig‐Maximilians‐Universität München Planegg‐Martinsried Munich 82152 Germanynone
bua.import.affiliationNeuhaus, H. Ekkehard; Plant Physiology Department of Biology Technische Universität Kaiserslautern Kaiserslautern 67663 Germanynone
bua.import.affiliationSchmitz‐Linneweber, Christian; Molecular Genetics Institute of Biology Humboldt‐Universität zu Berlin Berlin 10115 Germanynone
bua.import.affiliationFernie, Alisdair R.; Central Metabolism Max‐Planck‐Institut für Molekulare Pflanzenphysiologie Potsdam‐Golm 14476 Germanynone
bua.import.affiliationGeigenberger, Peter; Plant Metabolism Faculty of Biology Ludwig‐Maximilians‐Universität München Planegg‐Martinsried Munich 82152 Germanynone
bua.import.affiliationGrimm, Bernhard; Plant Physiology Institute of Biology Humboldt‐Universität zu Berlin Berlin 10115 Germanynone
bua.import.affiliationKaufmann, Kerstin; Plant Cell and Molecular Biology Institute of Biology Humboldt‐Universität zu Berlin Berlin 10115 Germanynone
bua.import.affiliationKlipp, Edda; Theoretical Biophysics Institute of Biology Humboldt‐Universität zu Berlin Berlin 10115 Germanynone
bua.import.affiliationMeurer, Jörg; Plant Molecular Biology Faculty of Biology Ludwig‐Maximilians‐Universität München Planegg‐Martinsried 82152 Germanynone
bua.import.affiliationMöhlmann, Torsten; Plant Physiology Department of Biology Technische Universität Kaiserslautern Kaiserslautern 67663 Germanynone
bua.import.affiliationMühlhaus, Timo; Computational Systems Biology Department of Biology Technische Universität Kaiserslautern Kaiserslautern 67663 Germanynone
bua.import.affiliationNaranjo, Belen; Plant Molecular Biology Faculty of Biology Ludwig‐Maximilians‐Universität München Planegg‐Martinsried 82152 Germanynone
bua.import.affiliationNickelsen, Jörg; Molecular Plant Science Faculty of Biology Ludwig‐Maximilians‐Universität München Planegg‐Martinsried, Munich 82152 Germanynone
bua.import.affiliationRichter, Andreas; Physiology of Plant Organelles Institute of Biology Humboldt‐Universität zu Berlin Berlin 10115 Germanynone
bua.import.affiliationRuwe, Hannes; Molecular Genetics Institute of Biology Humboldt‐Universität zu Berlin Berlin 10115 Germanynone
bua.import.affiliationSchroda, Michael; 13Molecular Biotechnology & Systems Biology Department of Biology Technische Universität Kaiserslautern Kaiserslautern 67663 Germanynone
bua.import.affiliationSchwenkert, Serena; Plant Biochemistry and Physiology Faculty of Biology Ludwig‐Maximilians‐Universität München Planegg‐Martinsried, Munich 82152 Germanynone
bua.import.affiliationTrentmann, Oliver; Plant Physiology Department of Biology Technische Universität Kaiserslautern Kaiserslautern 67663 Germanynone
bua.import.affiliationWillmund, Felix; Molecular Genetics of Eukaryotes Department of Biology Technische Universität Kaiserslautern Kaiserslautern 67663 Germanynone
bua.import.affiliationZoschke, Reimo; Translational Regulation in PlantsMax‐Planck‐Institut für Molekulare Pflanzenphysiologie Potsdam‐Golm 14476 Germanynone
bua.departmentLebenswissenschaftliche Fakultätnone

Show simple item record