Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2021-06-08Zeitschriftenartikel DOI: 10.3390/s21123960
Calibration Method for Particulate Matter Low-Cost Sensors Used in Ambient Air Quality Monitoring and Research
Venkatraman Jagatha, Janani cc
Klausnitzer, André cc
Miriam, Chacón-Mateos cc
Laquai, Bernd
Nieuwkoop, Evert
van der Mark, Peter
Vogt, Ulrich
Schneider, Christoph cc
Mathematisch-Naturwissenschaftliche Fakultät
Over the last decade, manufacturers have come forth with cost-effective sensors for measuring ambient and indoor particulate matter concentration. What these sensors make up for in cost efficiency, they lack in reliability of the measured data due to their sensitivities to temperature and relative humidity. These weaknesses are especially evident when it comes to portable or mobile measurement setups. In recent years many studies have been conducted to assess the possibilities and limitations of these sensors, however mostly restricted to stationary measurements. This study reviews the published literature until 2020 on cost-effective sensors, summarizes the recommendations of experts in the field based on their experiences, and outlines the quantile-mapping methodology to calibrate low-cost sensors in mobile applications. Compared to the commonly used linear regression method, quantile mapping retains the spatial characteristics of the measurements, although a common correction factor cannot be determined. We conclude that quantile mapping can be a useful calibration methodology for mobile measurements given a well-elaborated measurement plan assures providing the necessary data.
Files in this item
Thumbnail
sensors-21-03960-v2.pdf — Adobe PDF — 2.761 Mb
MD5: c31bfce33eb622bd2ccff0e9986cf819
Notes
This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3390/s21123960
Permanent URL
https://doi.org/10.3390/s21123960
HTML
<a href="https://doi.org/10.3390/s21123960">https://doi.org/10.3390/s21123960</a>