Show simple item record

2021-08-06Zeitschriftenartikel DOI: 10.18452/23516
Predicting Differences in Model Parameters with Individual Parameter Contribution Regression Using the R Package ipcr
dc.contributor.authorArnold, Manuel
dc.contributor.authorBrandmaier, Andreas
dc.contributor.authorVoelkle, Manuel
dc.date.accessioned2021-10-13T09:19:31Z
dc.date.available2021-10-13T09:19:31Z
dc.date.issued2021-08-06none
dc.identifier.urihttp://edoc.hu-berlin.de/18452/24167
dc.descriptionThis article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.none
dc.description.abstractUnmodeled differences between individuals or groups can bias parameter estimates and may lead to false-positive or false-negative findings. Such instances of heterogeneity can often be detected and predicted with additional covariates. However, predicting differences with covariates can be challenging or even infeasible, depending on the modeling framework and type of parameter. Here, we demonstrate how the individual parameter contribution (IPC) regression framework, as implemented in the R package ipcr, can be leveraged to predict differences in any parameter across a wide range of parametric models. First and foremost, IPC regression is an exploratory analysis technique to determine if and how the parameters of a fitted model vary as a linear function of covariates. After introducing the theoretical foundation of IPC regression, we use an empirical data set to demonstrate how parameter differences in a structural equation model can be predicted with the ipcr package. Then, we analyze the performance of IPC regression in comparison to alternative methods for modeling parameter heterogeneity in a Monte Carlo simulation.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectheterogeneityeng
dc.subjectindividual differenceseng
dc.subjectlinear regressioneng
dc.subjectReng
dc.subjectstructural equation modelingeng
dc.subjectlatent variableseng
dc.subject.ddc150 Psychologienone
dc.titlePredicting Differences in Model Parameters with Individual Parameter Contribution Regression Using the R Package ipcrnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/24167-3
dc.identifier.doihttp://dx.doi.org/10.18452/23516
dc.type.versionpublishedVersionnone
local.edoc.pages26none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn2624-8611
dcterms.bibliographicCitation.doi10.3390/psych3030027
dcterms.bibliographicCitation.journaltitlePsychnone
dcterms.bibliographicCitation.volume3none
dcterms.bibliographicCitation.issue3none
dcterms.bibliographicCitation.originalpublishernameMDPInone
dcterms.bibliographicCitation.originalpublisherplaceBaselnone
dcterms.bibliographicCitation.pagestart360none
dcterms.bibliographicCitation.pageend385none
bua.departmentLebenswissenschaftliche Fakultätnone

Show simple item record