Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2021-09-18Zeitschriftenartikel DOI: 10.3390/computers10090117
Feature Focus: Towards Explainable and Transparent Deep Face Morphing Attack Detectors †
Seibold, Clemens cc
Hilsmann, Anna cc
Eisert, Peter cc
Mathematisch-Naturwissenschaftliche Fakultät
Detecting morphed face images has become an important task to maintain the trust in automated verification systems based on facial images, e.g., at automated border control gates. Deep Neural Network (DNN)-based detectors have shown remarkable results, but without further investigations their decision-making process is not transparent. In contrast to approaches based on hand-crafted features, DNNs have to be analyzed in complex experiments to know which characteristics or structures are generally used to distinguish between morphed and genuine face images or considered for an individual morphed face image. In this paper, we present Feature Focus, a new transparent face morphing detector based on a modified VGG-A architecture and an additional feature shaping loss function, as well as Focused Layer-wise Relevance Propagation (FLRP), an extension of LRP. FLRP in combination with the Feature Focus detector forms a reliable and accurate explainability component. We study the advantages of the new detector compared to other DNN-based approaches and evaluate LRP and FLRP regarding their suitability for highlighting traces of image manipulation from face morphing. To this end, we use partial morphs which contain morphing artifacts in predefined areas only and analyze how much of the overall relevance each method assigns to these areas.
Files in this item
Thumbnail
computers-10-00117.pdf — Adobe PDF — 4.513 Mb
MD5: 31a01e3ae9dd9dd2142715dbec0f4536
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3390/computers10090117
Permanent URL
https://doi.org/10.3390/computers10090117
HTML
<a href="https://doi.org/10.3390/computers10090117">https://doi.org/10.3390/computers10090117</a>