Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2020-03-24Zeitschriftenartikel DOI: 10.18452/23697
Pre-service Biology Teachers’ Responses to First-Hand Anomalous Data During Modelling Processes
Meister, Sabine
Krell, Moritz cc
Göhner, Maximilian cc
Upmeier zu Belzen, Annette cc
Lebenswissenschaftliche Fakultät
In this research project we investigate the role of responses to anomalous data during modelling processes. Modelling is seen as a comprehensive practice that encompasses various aspects of scientific thinking; hence, it is an important style of scientific thinking, especially if analysed from a process-based perspective. Therefore, it provides the opportunity to understand the role of anomalous data on scientific thinking from a broader perspective. We analysed how pre-service biology teachers (N = 11) reacted to self-generated anomalous data during modelling processes induced by investigating a water black box. The videotaped and transcribed modelling processes were analysed using qualitative content analysis. If anomalous data were recognised, a majority of explanations were based on methodical issues. This finding supports results from previous studies investigating responses to first-hand anomalous data. Furthermore, we found four response patterns to anomalous data during modelling processes: no recognition, no explanation, methodical explanation, and model-related explanation. Besides, our study indicates by trend a systematic relation between response patterns to anomalous data and modelling strategies. Consequently, the improvement of responses to anomalous data could be a promising way to foster modelling competencies. We are convinced that an integrated approach to anomalous data and modelling could lead to deeper insights into the role of data in scientific thinking processes.
Files in this item
Thumbnail
Meister2021_Article_Pre-serviceBiologyTeachersResp.pdf — Adobe PDF — 708.4 Kb
MD5: 34053a086c270a55091c480dcb2b719d
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/23697
Permanent URL
https://doi.org/10.18452/23697
HTML
<a href="https://doi.org/10.18452/23697">https://doi.org/10.18452/23697</a>