Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2021-12-10Kumulative Dissertation DOI: 10.18452/23706
Financial Market Information with Modern Statistical Models
Hu, Junjie
Wirtschaftswissenschaftliche Fakultät
Modelle und Daten sind die beiden grundlegenden Elemente in den meisten Finanzmarktstudien. Viele Arbeiten konzentrieren sich auf die Verbesserung von Modellen zur besseren Annäherung an wahre Marktmechanismen, dabei konzentriert sich ein wichtiger Teil der Literatur auf die Nutzung von Informationen aus verschiedenen Quellen. In letzter Zeit haben immer mehr Forscher die Bedeutung der Modellierung aus realen Daten erkannt, dies geht einhermit der Weiterentwicklung moderner statistischer Modelle, insbesondere dem maschinellen (statistischen) Lernen, wie z. B. rekurrente neuronale Netze, die sich in den letzten Jahren bei vielen Problemen als wirksam erwiesen haben. Es hat sich gezeigt, dass der zunehmende Trend auf innovative Datenquellen wie Textnachrichten und Satellitenbilder zuzugreifen und diese zu analysieren, sich schnell zu einer wichtigen Säule der Finanzwissenschaft entwickelt hat. Auf der anderen Seite bietet die klassische Finanzliteratur eine fundierte Basis, um die aus diesen hochentwickelten Modellen und Daten gewonnenen Ergebnisse zu hinterfragen. Basierend auf der Finanzmarktanalyse mit modernen statistischen Modellen werden in dieser Dissertation in den ersten drei Kapiteln verschiedene Themen behandelt, darunter das Portfoliomanagement in Verbindung mit Informationen aus Nachrichtennetzwerken, das Risikomanagement des aufstrebenden Bitcoin-Marktes und die Vorhersage von Zeitreihen von Stromlasten mit fortgeschrittenen statistischen Modellen.
 
Models and data are the two fundamental elements in most of the studies on the financial market. Many papers concentrate on improving models to better approximate the true market mechanism, while an important strand of the literature focuses on exploiting more information from various sources. Recently, more and more researchers started to realize the importance of modeling from real-world data, along with the advancement of modern statistical models, especially the machine (statistical) learning models such as Recurrent Neural Network being proved to be effective on many problems in the past few years. Hence, we saw that an uprising trend of accessing and analyzing innovative data sources, such as textual news and satellite image, has been growing fast into a major pillar in financial studies. On the other hand, the classical finance literature provides us an angle to scrutinize the results generated from those sophisticated models and data. Under the spirit of financial market analysis with modern statistical models, this dissertation is written to cover various topics, including portfolio management coupled with the information from networks of news, risk management of the emerging Bitcoin market, and electricity load time series forecasting with the advanced statistical models, in the next three chapters.
 
Files in this item
Thumbnail
dissertation_hu_junjie.pdf — Adobe PDF — 11.16 Mb
MD5: 4e73b453c62d9c2506d0bb44acc1a649
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/23706
Permanent URL
https://doi.org/10.18452/23706
HTML
<a href="https://doi.org/10.18452/23706">https://doi.org/10.18452/23706</a>