Show simple item record

2021-10-29Zeitschriftenartikel DOI: 10.3390/fi13110278
Online Service Function Chain Deployment for Live-Streaming in Virtualized Content Delivery Networks: A Deep Reinforcement Learning Approach
dc.contributor.authorCevallos Moreno, Jesús Fernando
dc.contributor.authorSattler, Rebecca
dc.contributor.authorCaulier Cisterna, Raul
dc.contributor.authorRicciardi Celsi, Lorenzo
dc.contributor.authorSánchez Rodríguez, Aminael
dc.contributor.authorMecella, Massimo
dc.date.accessioned2022-01-06T11:13:34Z
dc.date.available2022-01-06T11:13:34Z
dc.date.issued2021-10-29none
dc.date.updated2021-11-04T23:22:51Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/24529
dc.description.abstractVideo delivery is exploiting 5G networks to enable higher server consolidation and deployment flexibility. Performance optimization is also a key target in such network systems. We present a multi-objective optimization framework for service function chain deployment in the particular context of Live-Streaming in virtualized content delivery networks using deep reinforcement learning. We use an Enhanced Exploration, Dense-reward mechanism over a Dueling Double Deep Q Network (E2-D4QN). Our model assumes to use network function virtualization at the container level. We carefully model processing times as a function of current resource utilization in data ingestion and streaming processes. We assess the performance of our algorithm under bounded network resource conditions to build a safe exploration strategy that enables the market entry of new bounded-budget vCDN players. Trace-driven simulations with real-world data reveal that our approach is the only one to adapt to the complexity of the particular context of Live-Video delivery concerning the state-of-art algorithms designed for general-case service function chain deployment. In particular, our simulation test revealed a substantial QoS/QoE performance improvement in terms of session acceptance ratio against the compared algorithms while keeping operational costs within proper bounds.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectlive-video deliveryeng
dc.subject5G networkseng
dc.subjectvirtualized content delivery networkseng
dc.subjectnetwork function virtualizationeng
dc.subjectservice function chain deploymenteng
dc.subjectdeep reinforcement learningeng
dc.subject.ddc004 Informatiknone
dc.titleOnline Service Function Chain Deployment for Live-Streaming in Virtualized Content Delivery Networks: A Deep Reinforcement Learning Approachnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/24529-6
dc.identifier.doi10.3390/fi13110278none
dc.identifier.doihttp://dx.doi.org/10.18452/23871
dc.type.versionpublishedVersionnone
local.edoc.container-titleFuture Internetnone
local.edoc.pages28none
local.edoc.type-nameZeitschriftenartikel
local.edoc.institutionMathematisch-Naturwissenschaftliche Fakultätnone
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameMDPInone
local.edoc.container-publisher-placeBaselnone
local.edoc.container-volume13none
local.edoc.container-issue11none
dc.description.versionPeer Reviewednone
local.edoc.container-articlenumber278none
dc.identifier.eissn1999-5903

Show simple item record