Show simple item record

2021-10-11Zeitschriftenartikel DOI: 10.3390/pr9101804
Vis-NIR Hyperspectral Imaging for Online Quality Evaluation during Food Processing: A Case Study of Hot Air Drying of Purple-Speckled Cocoyam (Colocasia esculenta (L.) Schott)
dc.contributor.authorNdisya, John
dc.contributor.authorGitau, Ayub
dc.contributor.authorMbuge, Duncan
dc.contributor.authorArefi, Arman
dc.contributor.authorBădulescu, Liliana
dc.contributor.authorPawelzik, Elke
dc.contributor.authorHensel, Oliver
dc.contributor.authorSturm, Barbara
dc.date.accessioned2022-01-06T12:15:30Z
dc.date.available2022-01-06T12:15:30Z
dc.date.issued2021-10-11none
dc.date.updated2021-11-05T00:34:50Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/24532
dc.description.abstractIn this study, hyperspectral imaging (HSI) and chemometrics were implemented to develop prediction models for moisture, colour, chemical and structural attributes of purple-speckled cocoyam slices subjected to hot-air drying. Since HSI systems are costly and computationally demanding, the selection of a narrow band of wavelengths can enable the utilisation of simpler multispectral systems. In this study, 19 optimal wavelengths in the spectral range 400–1700 nm were selected using PLS-BETA and PLS-VIP feature selection methods. Prediction models for the studied quality attributes were developed from the 19 wavelengths. Excellent prediction performance (RMSEP < 2.0, r2P > 0.90, RPDP > 3.5) was obtained for MC, RR, VS and aw. Good prediction performance (RMSEP < 8.0, r2P = 0.70–0.90, RPDP > 2.0) was obtained for PC, BI, CIELAB b*, chroma, TFC, TAA and hue angle. Additionally, PPA and WI were also predicted successfully. An assessment of the agreement between predictions from the non-invasive hyperspectral imaging technique and experimental results from the routine laboratory methods established the potential of the HSI technique to replace or be used interchangeably with laboratory measurements. Additionally, a comparison of full-spectrum model results and the reduced models demonstrated the potential replacement of HSI with simpler imaging systems.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectantioxidantseng
dc.subjectbrowning indexeng
dc.subjectCIE L*a*b*eng
dc.subjectmoisture contenteng
dc.subjectnon-invasive measurementseng
dc.subjectphenolic compoundseng
dc.subjectrehydration ratioeng
dc.subjectshrinkageeng
dc.subjectstructural morphologyeng
dc.subjectwater activityeng
dc.subject.ddc570 Biologienone
dc.titleVis-NIR Hyperspectral Imaging for Online Quality Evaluation during Food Processing: A Case Study of Hot Air Drying of Purple-Speckled Cocoyam (Colocasia esculenta (L.) Schott)none
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/24532-9
dc.identifier.doi10.3390/pr9101804none
dc.identifier.doihttp://dx.doi.org/10.18452/23874
dc.type.versionpublishedVersionnone
local.edoc.pages27none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn2227-9717
dcterms.bibliographicCitation.journaltitleProcesses : open access journalnone
dcterms.bibliographicCitation.volume9none
dcterms.bibliographicCitation.issue10none
dcterms.bibliographicCitation.articlenumber1804none
dcterms.bibliographicCitation.originalpublishernameMDPInone
dcterms.bibliographicCitation.originalpublisherplaceBaselnone
bua.departmentLebenswissenschaftliche Fakultätnone

Show simple item record