Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2021-11-03Zeitschriftenartikel DOI: 10.3390/app112110309
Integration of Sentinel-1 and Sentinel-2 Data with the G-SMOTE Technique for Boosting Land Cover Classification Accuracy
Ebrahimy, Hamid cc
Naboureh, Amin cc
Feizizadeh, Bakhtiar
Aryal, Jagannath cc
Ghorbanzadeh, Omid cc
Mathematisch-Naturwissenschaftliche Fakultät
The importance of Land Cover (LC) classification is recognized by an increasing number of scholars who employ LC information in various applications (i.e., address global climate change and achieve sustainable development). However, studying the roles of balancing data, image integration, and performance of different machine learning algorithms in various landscapes has not received as much attention from scientists. Therefore, the present study investigates the performance of three frequently used Machine Learning (ML) algorithms, including Extreme Learning Machines (ELM), Support Vector Machines (SVM), and Random Forest (RF) in LC mapping at six different landscapes. Moreover, the Geometric Synthetic Minority Over-sampling Technique (G-SMOTE) was adopted to deal with the class imbalance problem. In this work, the time-series of Sentinel-1 and Sentinel-2 data were integrated to improve LC mapping accuracy, taking advantage of both data. Moreover, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) was implemented to distinguish the most informative features. Based on the results, the RF integrated with G-SMOTE showed the best result for four landscapes (coastal, cropland, desert, and semi-arid). SVM integrated with G-SMOTE had the highest accuracy in the remaining two landscapes (plain and mountain). Applied ML algorithms showed good performances in various landscapes, ranging Overall Accuracy (OA) from 85% to 93% for RF, 83% to 94% for SVM, and 84% to 92% for ELM. The outcomes exhibit that although applying G-SMOTE may slightly decrease OA values, it generally boosts the results of LC classification accuracies in various landscapes, particularly for minority classes.
Files in this item
Thumbnail
applsci-11-10309.pdf — Adobe PDF — 1.999 Mb
MD5: b272701dfe68f312ade07b3710fc0d01
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3390/app112110309
Permanent URL
https://doi.org/10.3390/app112110309
HTML
<a href="https://doi.org/10.3390/app112110309">https://doi.org/10.3390/app112110309</a>