Show simple item record

2021-11-18Zeitschriftenartikel DOI: 10.3389/fphys.2021.733868
Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function
dc.contributor.authorChrist, Bruno
dc.contributor.authorCollatz, Maximilian
dc.contributor.authorDahmen, Uta
dc.contributor.authorHerrmann, Karl-Heinz
dc.contributor.authorHöpfl, Sebastian
dc.contributor.authorKönig, Matthias
dc.contributor.authorLambers, Lena
dc.contributor.authorMarz, Manja
dc.contributor.authorMeyer, Daria
dc.contributor.authorRadde, Nicole
dc.contributor.authorReichenbach, Jürgen R.
dc.contributor.authorRicken, Tim
dc.contributor.authorTautenhahn, Hans-Michael
dc.date.accessioned2022-01-14T08:41:14Z
dc.date.available2022-01-14T08:41:14Z
dc.date.issued2021-11-18none
dc.date.updated2021-12-02T12:12:54Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/24572
dc.description.abstractLiver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue. These forces are perceived by mechanosensors on parenchymal and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions as well as cellular signaling and metabolism. These interactions are key players in tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their dysregulation is associated with metabolic impairment of the liver eventually leading to liver failure, a serious post-hepatectomy complication with high morbidity and mortality. Though certain links are known, the overall functional change after liver surgery is not understood due to complex feedback loops, non-linearities, spatial heterogeneities and different time-scales of events. Computational modeling is a unique approach to gain a better understanding of complex biomedical systems. This approach allows (i) integration of heterogeneous data and knowledge on multiple scales into a consistent view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses based on predictive models, which must be validated experimentally and clinically. In the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences; and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review the alterations of hepatic perfusion, biomechanical properties and function associated with hepatectomy. Specifically, we provide an overview over the clinical problem, preoperative diagnostics, functional imaging approaches, experimental approaches in animal models, mechanoperception in the liver and impact on cellular metabolism, omics approaches with a focus on transcriptomics, data integration and uncertainty analysis, and computational modeling on multiple scales. Finally, we provide a perspective on how multi-scale computational models, which couple perfusion changes to hepatic function, could become part of clinical workflows to predict and optimize patient outcome after complex liver surgery.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectmulti-scale modelingeng
dc.subjectliver regenerationeng
dc.subjectliver surgeryeng
dc.subjectliver perfusioneng
dc.subjectperfusion/function relationshipeng
dc.subjectmechanoperceptioneng
dc.subjectrodent models of liver surgeryeng
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleHepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Functionnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/24572-2
dc.identifier.doi10.3389/fphys.2021.733868none
dc.identifier.doihttp://dx.doi.org/10.18452/23941
dc.type.versionpublishedVersionnone
local.edoc.container-titleFrontiers in physiologynone
local.edoc.pages34none
local.edoc.type-nameZeitschriftenartikel
local.edoc.institutionLebenswissenschaftliche Fakultätnone
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameFrontiers Research Foundationnone
local.edoc.container-publisher-placeLausannenone
local.edoc.container-volume12none
dc.description.versionPeer Reviewednone
local.edoc.container-articlenumber733868none
dc.identifier.eissn1664-042X

Show simple item record