Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2020-06-29Zeitschriftenartikel DOI: 10.18452/24021
A Taxonomy to Structure and Analyze Human–Robot Interaction
Onnasch, Linda cc
Roesler, Eileen cc
Lebenswissenschaftliche Fakultät
Robotic systems are one of the core technologies that will shape our future. Robots already change our private and professional life by working together with humans in various domains. Evoked by this increasing trend, great variability exists in terms of robots and interaction scenarios. This has boosted research regarding shaping factors of human–robot interaction (HRI). Nevertheless, this variety hinders the comparability and the generalizability of insights. What is needed for efficient research is a structured approach that allows the analysis of superordinate attributes, making previous HRI research comparable, revealing research gaps and thus guiding future research activities. Based on the review of previous HRI frameworks we developed a new HRI taxonomy that (1) takes into account the human, the robot, the interaction and the context of the HRI, (2) is applicable to various HRI scenarios and (3) provides predefined categories to enable structured comparisons of different HRI scenarios. A graphical representation of the taxonomy, including all possible classifications, eases the application to specific HRI scenarios. To demonstrate the use and value of this taxonomy, it is applied to different studies in HRI in order to identify possible reasons for contrasting results. The exemplified applications of the taxonomy underline its value as a basis for reviews and meta-analyses. Moreover, the taxonomy offers a framework for future HRI research as it offers guidance for systematic variations of distinctive variables in HRI.
Files in this item
Thumbnail
Onnasch-Roesler2021_Article_ATaxonomyToStructureAndAnalyze.pdf — Adobe PDF — 1.132 Mb
MD5: 54fcac710af19a8c19419068076d5328
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/24021
Permanent URL
https://doi.org/10.18452/24021
HTML
<a href="https://doi.org/10.18452/24021">https://doi.org/10.18452/24021</a>