Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2021-10-21Zeitschriftenartikel DOI: 10.1088/1361-6463/ac2d62
Reversible training of waveguide-based AND/OR gates for optically driven artificial neural networks using photochromic molecules
Rhim, Seon-Young cc
Ligorio, Giovanni cc
Hermerschmidt, Felix cc
Pätzel, Michael
Herder, Martin cc
Hecht, Stefan cc
List-Kratochvil, Emil J.W. cc
Mathematisch-Naturwissenschaftliche Fakultät
Artificial neural networks (ANNs) are inspired by the biological nervous system. The high performance of such ANNs is achieved through the dynamic change of the synaptic weights by applying self-optimizing learning algorithms. Despite the simple operations for each single element in an ANN, a network with a huge number of simulated elements consumes lots of computing capacity using von Neumann computer architectures. To overcome this issue, neuromorphic devices facilitate the design of hardware ANNs that emulate the synaptic functions. Here we demonstrate the viability of such an approach using photonic waveguides in combination with a photochromic diarylethene (DAE) molecule. By positioning and irradiating DAE molecules on single waveguides, we modulate the intensity and thereby emulate the plasticity of the synaptic weights. To run the photonic device as an ANN we firstly characterize the modulation range and encode a learning procedure accordingly. As the proof of concept, we operate a y-shaped waveguide performing basic AND/OR logic gate functions, with the capability to switch between these two gate functions by using specific training sets.
Files in this item
Thumbnail
d_55_4_044002.pdf — Adobe PDF — 1.519 Mb
MD5: be496c4daaa327613efdf22b3a47855b
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1088/1361-6463/ac2d62
Permanent URL
https://doi.org/10.1088/1361-6463/ac2d62
HTML
<a href="https://doi.org/10.1088/1361-6463/ac2d62">https://doi.org/10.1088/1361-6463/ac2d62</a>