Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2022-02-01Kumulative Dissertation DOI: 10.18452/23903
Energy and Water Exchange Processes in Boreal Permafrost Ecosystems
Stünzi, Simone Maria
Mathematisch-Naturwissenschaftliche Fakultät
Boreale Wälder in Permafrostregionen sind ein wesentlicher Bestandteil regionaler und globaler Klimamuster und machen etwa ein Drittel der weltweiten Waldfläche aus. Die Entwicklung der Waldbedeckung hat einen wichtigen Einfluss auf den Permafrost, da dieser durch die Vegetation geschützt wird. Der direkte Einfluss des Klimawandels auf die Wälder und der indirekte Effekt durch eine Veränderung der Permafrostdynamik können zu weitreichenden Ökosystemverschiebungen führen, die wiederum die Persistenz des Permafrosts beeinträchtigen und wichtige Ökosystemfunktionen destabilisieren könnten. Ziel dieser Dissertation ist es zu verstehen, wie sich die komplexen Wechselwirkungen zwischen der Vegetation, dem Permafrost und der Atmosphäre auf die Wälder und den darunterliegenden Permafrost auswirken. Im Rahmen dieser Dissertation habe ich ein eindimensionales, numerisches Landoberflächenmodell (CryoGrid), das zur Simulation der physikalischen Prozesse in Permafrostgebieten verwendet werden kann, für die Anwendung in bewaldetem Gebieten angepasst. Dazu habe ich ein detailliertes, mehrschichtiges Kronendachmodell (CLM-ml v0) und ein dynamisches Lärchenbestandsmodell gekoppelt. Dies ermöglichte den Energietransfer und das Wärmeregime welche für die komplexe Wald-Permafrost-Dynamik verantwortlich sind an verschiedenen Untersuchungsstandorten in gemischten und lärchendominierten Wäldern in Ostsibirien zu reproduzieren. Die numerischen Simulationen ergaben, dass die Wälder den thermischen und hydrologischen Zustand des Permafrosts hauptsächlich durch die Veränderung der Strahlungsbilanz und der Phänologie der Schneedecke beeinflussen und so eine stabilisierende Wirkung haben. Die Untersuchung der unterschiedlichen isolierenden Wirkung verschiedener Waldtypen und Walddichten sowie die Rückkopplungsmechanismen nach Störungen zeigen Veränderungen der thermischen und hydrologischen Bedingungen und der Tiefe der Auftauschicht. Zusammenfassend legen die Ergebnisse nahe, dass lokale, detaillierte und spezifische Landoberflächenmodelle erforderlich sind, um die komplexe Dynamik in borealen Permafrostökosystemen vollständig zu erfassen. Veränderungen der Rückkopplungen zwischen Permafrost, Klima, Wald und Störungen werden die eng gekoppelten Ökosystemfunktionen destabilisieren. Die induzierten Bodenveränderungen werden sich auf wichtige Wald- und Permafrostfunktionen, wie beispielsweise die Isolation des Permafrostbodens oder die Kohlenstoffspeicherung, und Rückkopplungsmechanismen wie Überschwemmung, Dürren, Brände, und Waldverlust, auswirken.
 
Boreal forests in permafrost regions make up around one-third of the global forest cover and are an essential component of regional and global climate patterns. The forests efficiently protect the underlying permafrost but the exact processes are not well understood. The direct influence of climatic change on forests and the indirect effect through a change in permafrost dynamics can lead to extensive ecosystem shifts, which will, in turn, affect permafrost persistence and potentially destabilize various ecosystem functions. The aim of this dissertation is to understand how complex interactions between the vegetation, permafrost, and the atmosphere stabilize the forests and the underlying permafrost. Within this dissertation, I have adapted a one-dimensional, numerical land surface model (CryoGrid), which can be used to simulate the physical processes in permafrost regions, for the application in vegetated areas by coupling a detailed multilayer canopy model (CLM-ml v0), and a dynamic larch stand model. An intensive validation of the model setup has allowed for the precise quantification of the heat- and water transfer processes responsible for the complex permafrost dynamics under boreal forest covers. At a variety of study sites throughout eastern Siberia, the numerical simulations revealed that the forests exert a strong control on the thermal and hydrological state of permafrost through changing the radiation balance and snow cover phenology. The forest cover has a net stabilizing effect on the permafrost ground below. The detailed physical model has furthermore enabled me to study the variation in insulation effect between different forest types and densities as well as the feedback mechanisms occurring after disturbances. In summary, the results suggest that local, detailed, and specific land surface models are required to fully comprehend the complex dynamics in boreal permafrost ecosystems. The research revealed that the feedbacks between permafrost, climate, boreal forest, and disturbances will destabilize tightly coupled ecosystem functions. The induced changes will affect key forest and permafrost functions, such as the forest's insulation capacity or the carbon budget, as well as feedback mechanisms like swamping, droughts, fires, or forest loss.
 
Files in this item
Thumbnail
dissertation_stuenzi_simone.pdf — Adobe PDF — 29.47 Mb
MD5: 308d526b59352cd726dc7eb852d63d3a
References
Has Part: https://doi.org/10.5194/bg-18-343-2021
Has Part: https://doi.org/10.1088/1748-9326/ac153d
Has Part: https://doi.org/10.5194/gmd-2021-304
References: https://doi.org/10.1594/PANGAEA.919859
References: https://doi.org/10.1594/PANGAEA.914327
References: https://doi.org/10.1594/PANGAEA.923638
References: https://doi.org/10.5281/zenodo.4317107
References: https://doi.org/10.5281/zenodo.4603668
References: https://doi.org/10.5281/zenodo.5119987
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/23903
Permanent URL
https://doi.org/10.18452/23903
HTML
<a href="https://doi.org/10.18452/23903">https://doi.org/10.18452/23903</a>