Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2021-02-04Zeitschriftenartikel DOI: 10.1088/1361-6528/abb333
Roadmap on quantum nanotechnologies
Laucht, Arne cc
Hohls, Frank cc
Ubbelohde, Niels cc
Gonzalez Zalba, Miguel Fernando cc
Reilly, David J
Stobbe, Søren cc
Schröder, Tim cc
Scarlino, Pasquale cc
Koski, Jonne cc
Dzurak, Andrew cc
Yang, Chih-Hwan
Yoneda, Jun cc
Kuemmeth, Ferdinand cc
Bluhm, Hendrik cc
Pla, Jarryd cc
Hill, Charles cc
Salfi, Joseph cc
Oiwa, Akira cc
Muhonen, Juha cc
Verhagen, Ewold cc
LaHaye, M D
Kim, Hyun Ho
Tsen, Adam W
Culcer, Dimitrie cc
Geresdi, Attila cc
Mol, Jan A
Mohan, Varun
Jain, Prashant cc
Baugh, Jonathan cc
Mathematisch-Naturwissenschaftliche Fakultät
Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a view to what the future holds. Materials and devices with nanoscale features are used for quantum metrology and sensing, as building blocks for quantum computing, and as sources and detectors for quantum communication. They enable explorations of quantum behaviour and unconventional states in nano- and opto-mechanical systems, low-dimensional systems, molecular devices, nano-plasmonics, quantum electrodynamics, scanning tunnelling microscopy, and more. This rapidly expanding intersection of nanotechnology and quantum science/technology is mutually beneficial to both fields, laying claim to some of the most exciting scientific leaps of the last decade, with more on the horizon.
Files in this item
Thumbnail
nano_32_16_162003.pdf — Adobe PDF — 6.276 Mb
MD5: 9c243a23d483b1f03508ade0f8a80e4e
Notes
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1088/1361-6528/abb333
Permanent URL
https://doi.org/10.1088/1361-6528/abb333
HTML
<a href="https://doi.org/10.1088/1361-6528/abb333">https://doi.org/10.1088/1361-6528/abb333</a>