Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2018-01-11Zeitschriftenartikel DOI: 10.1088/2053-1583/aaa4ca
Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates
Park, Soohyung cc
Mutz, Niklas
Schultz, Thorsten cc
Blumstengel, Sylke
Han, Ali
Aljarb, Areej
Li, Lain-Jong cc
List-Kratochvil, Emil J.W. cc
Amsalem, Patrick
Koch, Norbert cc
Mathematisch-Naturwissenschaftliche Fakultät
Understanding the excitonic nature of excited states in two-dimensional (2D) transition-metal dichalcogenides (TMDCs) is of key importance to make use of their optical and charge transport properties in optoelectronic applications. We contribute to this by the direct experimental determination of the exciton binding energy (Eb,exc) of monolayer MoS2 and WSe2 on two fundamentally different substrates, i.e. the insulator sapphire and the metal gold. By combining angle-resolved direct and inverse photoelectron spectroscopy we measure the electronic band gap (Eg), and by reflectance measurements the optical excitonic band gap (Eexc). The difference of these two energies is Eb,exc. The values of Eg and Eb,exc are 2.11 eV and 240 meV for MoS2 on sapphire, and 1.89 eV and 240 meV for WSe2 on sapphire. On Au Eb,exc is decreased to 90 meV and 140 meV for MoS2 and WSe2, respectively. The significant Eb,exc reduction is primarily due to a reduction of Eg resulting from enhanced screening by the metal, while Eexc is barely decreased for the metal support. Energy level diagrams determined at the K-point of the 2D TMDCs Brillouin zone show that MoS2 has more p-type character on Au as compared to sapphire, while WSe2 appears close to intrinsic on both. These results demonstrate that the impact of the dielectric environment of 2D TMDCs is more pronounced for individual charge carriers than for a correlated electron–hole pair, i.e. the exciton. A proper dielectric surrounding design for such 2D semiconductors can therefore be used to facilitate superior optoelectronic device function.
Files in this item
Thumbnail
tdm_5_2_025003.pdf — Adobe PDF — 1.445 Mb
MD5: 6cbc685aef9ab4fed0526d37025ba68d
Cite
BibTeX
EndNote
RIS
(CC BY 3.0) Attribution 3.0 Unported(CC BY 3.0) Attribution 3.0 Unported
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1088/2053-1583/aaa4ca
Permanent URL
https://doi.org/10.1088/2053-1583/aaa4ca
HTML
<a href="https://doi.org/10.1088/2053-1583/aaa4ca">https://doi.org/10.1088/2053-1583/aaa4ca</a>