Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2022-03-22Dissertation DOI: 10.18452/24242
Rayleigh Scattering of Pulsed Supersonic Ar and CO2 Beams at High Particle Densities
Fazli, Sara
Mathematisch-Naturwissenschaftliche Fakultät
In dieser Arbeit wird eine umfassende Untersuchung von Clustern vorgestellt, wobei der Schwerpunkt auf dem Einfluss von Quellendruck, Temperatur und Agglomerationszustand auf die erzeugten Cluster liegt. Die neutralen Cluster werden durch Überschallstrahl-Expansion von Ar und CO2 in einem weniger untersuchten Bereich von Quellendrücken und -temperaturen erzeugt und anschließend durch Ultrahoch-Rayleigh-Streuungsmessungen charakterisiert. Die Analyse zeigt, dass das bekannte empirische Skalierungsgesetz möglicherweise nicht genau genug ist, wenn die Clustergrößen in realen Systemen einen breiteren Bereich abdecken. Ein wichtiger Schritt ist der Übergang von Ar als nahezu ideales Gas zu CO2 als reales System. Um zu beurteilen, ob die Werte der mittleren Clustergrößen aussagekräftig sind, wird in dieser Arbeit ein auf den experimentellen Ergebnissen basierendes Modell vorgeschlagen, das eine geeignete Position der Laser-Cluster-Wechselwirkungsregion im kollisionsfreien Bereich des Molekularstrahls bestimmt. Die geringe zeitliche Auflösung des mit dem Oszilloskop erfassten Signals führt zur Anwendung der Photonenzählung, die eine höhere Nachweisempfindlichkeit bietet. Im Falle von Ar-Clustern zeigt diese Methode die Übereinstimmung des Verhaltens mit den bekannten theoretischen Berechnungen. Die Analyse der relativen mittleren CO2-Clustergrößen zeigt dagegen, dass die theoretische Skalierung für Cluster, die sich aus Flüssigkeiten mit hoher Dichte bilden, nicht gut geeignet ist. Die relative mittlere Größe kleiner und besonders großer Cluster ermöglicht die Unterscheidung zwischen Clustern, die durch Expansion von der gasförmigen oder flüssigen Seite des kritischen Punktes erzeugt werden, und einem Zwischenbereich, in dem die Expansion die überkritischen gasförmigen und flüssigen Bereiche passiert. Bei Messungen in der Nähe der Widom-Linie zeigen zwei verschiedene gemessene und berechnete Skalierungsgesetze einen scharfen Übergang beim Überschreiten dieser Linie.
 
This thesis presents a comprehensive study of clusters with a focus on the influence of the source pressure, temperature, and agglomeration state on the generated clusters. The neutral clusters are generated by supersonic jet expansion of Ar and CO2 applying a less-studied range of source pressures and source temperatures and then characterized by ultra-high Rayleigh scattering measurements. The analysis indicates that the known empirical scaling law may lack sufficient accuracy when cluster sizes cover a broader range in real systems. An important step is moving from Ar as a near-ideal gas to CO2 as a real system. To evaluate whether the values of the mean cluster sizes are meaningful, in this thesis, a model based on the experimental results is proposed, which determines an appropriate position of the laser-cluster interaction region in the collisionless domain of the molecular beam. The low temporal resolution of the detected signal via oscilloscope leads to the application of photon counting that provides a higher detection sensitivity. In the case of Ar clusters, this method reveals the compliance of the behavior with the known theoretical calculations. The analysis of the relative mean CO2 cluster sizes, in contrast, indicate that the theoretical scaling does not suit well for clusters formed from the high-density fluids. The relative mean size of small and extra-large clusters enables the distinction of the clusters generated via expansion from the gas or the liquid side of the critical point and an intermediate regime where the expansion passes the supercritical gas-like and liquid-like regions. In measurements at conditions near the Widom line, two different measured and calculated scaling laws reveal a sharp transition on crossing it.
 
Files in this item
Thumbnail
dissertation_fazli_sara.pdf — Adobe PDF — 325.0 Mb
MD5: 778d3fcd8cba1c065e5caf7577b9f2c5
Cite
BibTeX
EndNote
RIS
(CC BY-NC 4.0) Attribution-NonCommercial 4.0 International(CC BY-NC 4.0) Attribution-NonCommercial 4.0 International(CC BY-NC 4.0) Attribution-NonCommercial 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/24242
Permanent URL
https://doi.org/10.18452/24242
HTML
<a href="https://doi.org/10.18452/24242">https://doi.org/10.18452/24242</a>