Show simple item record

2017-08-07Zeitschriftenartikel DOI: 10.1088/1367-2630/aa7b61
Timing of transients: quantifying reaching times and transient behavior in complex systems
dc.contributor.authorKittel, Tim
dc.contributor.authorHeitzig, Jobst
dc.contributor.authorWebster, Kevin
dc.contributor.authorKurths, Jürgen
dc.date.accessioned2022-03-25T10:32:23Z
dc.date.available2022-03-25T10:32:23Z
dc.date.issued2017-08-07none
dc.date.updated2022-02-11T07:15:17Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/25029
dc.description.abstractIn dynamical systems, one may ask how long it takes for a trajectory to reach the attractor, i.e. how long it spends in the transient phase. Although for a single trajectory the mathematically precise answer may be infinity, it still makes sense to compare different trajectories and quantify which of them approaches the attractor earlier. In this article, we categorize several problems of quantifying such transient times. To treat them, we propose two metrics, area under distance curve and regularized reaching time, that capture two complementary aspects of transient dynamics. The first, area under distance curve, is the distance of the trajectory to the attractor integrated over time. It measures which trajectories are ‘reluctant’, i.e. stay distant from the attractor for long, or ‘eager’ to approach it right away. Regularized reaching time, on the other hand, quantifies the additional time (positive or negative) that a trajectory starting at a chosen initial condition needs to approach the attractor as compared to some reference trajectory. A positive or negative value means that it approaches the attractor by this much ‘earlier’ or ‘later’ than the reference, respectively. We demonstrated their substantial potential for application with multiple paradigmatic examples uncovering new features.eng
dc.description.sponsorshipDeutsche Forschungsgemeinschafthttps://doi.org/10.13039/501100001659
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 3.0) Attribution 3.0 Unportedger
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subjectearly-warning signalseng
dc.subjectcomplex systemseng
dc.subjectnonlinear dynamicseng
dc.subjectordinary differential equationseng
dc.subjectstability against shockseng
dc.subject.ddc530 Physiknone
dc.titleTiming of transients: quantifying reaching times and transient behavior in complex systemsnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/25029-4
dc.identifier.doi10.1088/1367-2630/aa7b61none
dc.identifier.doihttp://dx.doi.org/10.18452/24376
dc.type.versionpublishedVersionnone
local.edoc.container-titleNew journal of physics : the open-access journal for physicsnone
local.edoc.pages14none
local.edoc.type-nameZeitschriftenartikel
local.edoc.institutionMathematisch-Naturwissenschaftliche Fakultätnone
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameIOPnone
local.edoc.container-publisher-place[London]none
local.edoc.container-volume19none
local.edoc.container-issue8none
dc.description.versionPeer Reviewednone
local.edoc.container-articlenumber083005none
dc.identifier.eissn1367-2630

Show simple item record