Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2020-03-23Zeitschriftenartikel DOI: 10.1088/1367-2630/ab7a05
Monte Carlo basin bifurcation analysis
Gelbrecht, Maximilian cc
Kurths, Jürgen
Hellmann, Frank cc
Mathematisch-Naturwissenschaftliche Fakultät
Many high-dimensional complex systems exhibit an enormously complex landscape of possible asymptotic states. Here, we present a numerical approach geared towards analyzing such systems. It is situated between the classical analysis with macroscopic order parameters and a more thorough, detailed bifurcation analysis. With our machine learning method, based on random sampling and clustering methods, we are able to characterize the different asymptotic states or classes thereof and even their basins of attraction. In order to do this, suitable, easy to compute, statistics of trajectories with randomly generated initial conditions and parameters are clustered by an algorithm such as DBSCAN. Due to its modular and flexible nature, our method has a wide range of possible applications in many disciplines. While typical applications are oscillator networks, it is not limited only to ordinary differential equation systems, every complex system yielding trajectories, such as maps or agent-based models, can be analyzed, as we show by applying it the Dodds–Watts model, a generalized SIRS-model, modeling social and biological contagion. A second order Kuramoto model, used, e.g. to investigate power grid dynamics, and a Stuart–Landau oscillator network, each exhibiting a complex multistable regime, are shown as well. The method is available to use as a package for the Julia language.
Files in this item
Thumbnail
njp_22_3_033032.pdf — Adobe PDF — 2.624 Mb
MD5: 0029d5095ee97387a2bbbf0ddcb569ac
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1088/1367-2630/ab7a05
Permanent URL
https://doi.org/10.1088/1367-2630/ab7a05
HTML
<a href="https://doi.org/10.1088/1367-2630/ab7a05">https://doi.org/10.1088/1367-2630/ab7a05</a>