The binuclear nickel center in the A-cluster of acetyl-CoA synthase (ACS) and two biomimetic dinickel complexes studied by X-ray absorption and emission spectroscopy
Mathematisch-Naturwissenschaftliche Fakultät
Acetyl-CoA synthase (ACS) is involved in the bacterial carbon oxide conversion pathway. The binuclear nickel sites in ACS enzyme and two biomimetic synthetic compounds containing a Ni(II)Ni(II) unit (1 and 2) were compared using XAS/XES. EXAFS analysis of ACS proteins revealed similar Ni-N/O/S bond lengths and Ni-Ni/Fe distances as in the crystal structure in oxidized ACS, but elongated Ni-ligand bonds in reduced ACS, suggesting more reduced nickel species. The XANES spectra of ACS and the dinickel complexes showed overall similar shapes, but less resolved pre-edge and edge features in ACS, attributed to more distorted square-planar nickel sites in particular in reduced ACS. DFT calculation of pre-edge absorption and Kβ2,5 emission features reproduced the experimental spectra of the synthetic complexes, was sensitive even to the small geometry differences in 1 and 2, and indicated low-spin Ni(II) sites. Comparison of nickel sites in proteins and biomimetic compounds is valuable for deducing structural and electronic differences in response to ligation and redox changes.
Files in this item