Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2016-07-01Zeitschriftenartikel DOI: 10.1088/1742-6596/727/1/012010
Balanced-Viscosity solutions for multi-rate systems
Mielke, Alexander cc
Rossi, Riccarda cc
Savare, Giuseppe cc
Mathematisch-Naturwissenschaftliche Fakultät
Several mechanical systems are modeled by the static momentum balance for the displacement u coupled with a rate-independent flow rule for some internal variable z. We consider a class of abstract systems of ODEs which have the same structure, albeit in a finite-dimensional setting, and regularize both the static equation and the rate-independent flow rule by adding viscous dissipation terms with coefficients εα and ε, where 0 < ε « 1 and α > 0 is a fixed parameter. Therefore for α ≠ 1 u and z have different relaxation rates. We address the vanishing-viscosity analysis as ε ↓ 0 of the viscous system. We prove that, up to a subsequence, (reparameterized) viscous solutions converge to a parameterized curve yielding a Balanced Viscosity solution to the original rate-independent system, and providing an accurate description of the system behavior at jumps. We also give a reformulation of the notion of Balanced Viscosity solution in terms of a system of subdifferential inclusions, showing that the viscosity in u and the one in z are involved in the jump dynamics in different ways, according to whether α > 1, α =1, and α є (0,1).
Files in this item
Thumbnail
JPCS_727_1_012010.pdf — Adobe PDF — 1.686 Mb
MD5: f2dddb173d3bd628c2f397f8f2fe4d49
Cite
BibTeX
EndNote
RIS
(CC BY 3.0) Attribution 3.0 Unported(CC BY 3.0) Attribution 3.0 Unported
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1088/1742-6596/727/1/012010
Permanent URL
https://doi.org/10.1088/1742-6596/727/1/012010
HTML
<a href="https://doi.org/10.1088/1742-6596/727/1/012010">https://doi.org/10.1088/1742-6596/727/1/012010</a>