Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2022-04-25Dissertation DOI: 10.18452/24464
Uniform sup-norm bounds for Siegel cusp forms
Mandal, Antareep
Mathematisch-Naturwissenschaftliche Fakultät
Es sei Γ eine torsionsfreie arithmetische Untergruppe der symplektischen Gruppe Sp(n,R), die auf dem Siegelschen oberen Halbraum H_n vom Grad n wirkt. Wir betrachten den d-dimensionalen Raum der Siegelschen Spitzenformen vom Gewicht k zur Gruppe Γ, mit einer Orthonormalbasis {f_1,…,f_d}. In der vorliegenden Dissertation zeigen wir mit Hilfe des Wärmeleitungskerns, dass die Supremumsnorm von S_k(Z):=det(Y)^k (|f_1(Z)|^2+…+|f_d(Z)|^2) (Z∈H_n) für n=2 ohne zusätzliche Bedingungen und für n>2 unter Annahme einer vermuteten Determinanten-Ungleichung nach oben beschränkt ist. Wenn M:=Γ\H_n kompakt ist, dann ist die obere Schranke durch c_(n,Γ) k^{n(n+1)/2} gegeben. Wenn M nicht kompakt und von endlichem Volumen ist, dann ist die obere Schranke durch c_(n,Γ) k^{3n(n+1)/4} gegeben. In beiden Fällen ist c_(n,Γ) eine positive reelle Konstante, die nur vom Grad n und der Gruppe Γ abhängt. Wir zeigen weiter, dass die obere Schranke in dem Sinne gleichmäßig ist, dass bei fixierter Gruppe Γ_0 die Konstante c_(n,Γ) für Untergruppen Γ von endlichem Index nur vom Grad n und der Gruppe Γ_0 abhängt.
 
Let Γ be a torsion-free arithmetic subgroup of the symplectic group Sp(n,R) acting on the Siegel upper half-space H_n of degree n. Consider the d-dimensional space of Siegel cusp forms of weight k for Γ with an orthonormal basis {f_1,…,f_d}. In this thesis we show using the heat kernel method that for n=2 unconditionally and for n>2 subject to a conjectural determinant-inequality, the sup-norm of the quantity S_k(Z):=det(Y)^k (|f1(Z)|^2+…+|f_d(Z)|^2) (Z∈H_n) is bounded above by c_(n,Γ) k^{n(n+1)/2} when M:=Γ\H_n is compact and by c_(n,Γ) k^{3n(n+1)/4} when M is non-compact of finite volume, where c_(n,Γ) denotes a positive real constant depending only on the degree n and the group Γ. Furthermore, we show that this bound is uniform in the sense that if we fix a group Γ_0 and take Γ to be a subgroup of Γ_0 of finite index, then the constant c_(n,Γ) in these bounds depends only on the degree n and the fixed group Γ_0.
 
Files in this item
Thumbnail
dissertation_mandal_antareep.pdf — Adobe PDF — 845.1 Kb
MD5: eefa77bee16ee95cf724cd5a6ae7b38b
Cite
BibTeX
EndNote
RIS
(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/24464
Permanent URL
https://doi.org/10.18452/24464
HTML
<a href="https://doi.org/10.18452/24464">https://doi.org/10.18452/24464</a>