Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2022-04-27Dissertation DOI: 10.18452/24340
Towards Efficient Novel Materials Discovery
Acceleration of High-throughput Calculations and Semantic Management of Big Data using Ontologies
Lenz-Himmer, Maja-Olivia
Mathematisch-Naturwissenschaftliche Fakultät
Die Entdeckung von neuen Materialien mit speziellen funktionalen Eigenschaften ist eins der wichtigsten Ziele in den Materialwissenschaften. Das Screening des strukturellen und chemischen Phasenraums nach potentiellen neuen Materialkandidaten wird häufig durch den Einsatz von Hochdurchsatzmethoden erleichtert. Schnelle und genaue Berechnungen sind eins der Hauptwerkzeuge solcher Screenings, deren erster Schritt oft Geometrierelaxationen sind. In Teil I dieser Arbeit wird eine neue Methode der eingeschränkten Geometrierelaxation vorgestellt, welche die perfekte Symmetrie des Kristalls erhält, Resourcen spart sowie Relaxationen von metastabilen Phasen und Systemen mit lokalen Symmetrien und Verzerrungen erlaubt. Neben der Verbesserung solcher Berechnungen um den Materialraum schneller zu durchleuchten ist auch eine bessere Nutzung vorhandener Daten ein wichtiger Pfeiler zur Beschleunigung der Entdeckung neuer Materialien. Obwohl schon viele verschiedene Datenbanken für computerbasierte Materialdaten existieren ist die Nutzbarkeit abhängig von der Darstellung dieser Daten. Hier untersuchen wir inwiefern semantische Technologien und Graphdarstellungen die Annotation von Daten verbessern können. Verschiedene Ontologien und Wissensgraphen werden entwickelt anhand derer die semantische Darstellung von Kristallstrukturen, Materialeigenschaften sowie experimentellen Ergebenissen im Gebiet der heterogenen Katalyse ermöglicht werden. Wir diskutieren, wie der Ansatz Ontologien und Wissensgraphen zu separieren, zusammenbricht wenn neues Wissen mit künstlicher Intelligenz involviert ist. Eine Zwischenebene wird als Lösung vorgeschlagen. Die Ontologien bilden das Hintergrundwissen, welches als Grundlage von zukünftigen autonomen Agenten verwendet werden kann. Zusammenfassend ist es noch ein langer Weg bis Materialdaten für Maschinen verständlich gemacht werden können, so das der direkte Nutzen semantischer Technologien nach aktuellem Stand in den Materialwissenschaften sehr limitiert ist.
 
The discovery of novel materials with specific functional properties is one of the highest goals in materials science. Screening the structural and chemical space for potential new material candidates is often facilitated by high-throughput methods. Fast and still precise computations are a main tool for such screenings and often start with a geometry relaxation to find the nearest low-energy configuration relative to the input structure. In part I of this work, a new constrained geometry relaxation is presented which maintains the perfect symmetry of a crystal, saves time and resources as well as enables relaxations of meta-stable phases and systems with local symmetries or distortions. Apart from improving such computations for a quicker screening of the materials space, better usage of existing data is another pillar that can accelerate novel materials discovery. While many different databases exists that make computational results accessible, their usability depends largely on how the data is presented. We here investigate how semantic technologies and graph representations can improve data annotation. A number of different ontologies and knowledge graphs are developed enabling the semantic representation of crystal structures, materials properties as well experimental results in the field of heterogeneous catalysis. We discuss the breakdown of the knowledge-graph approach when knowledge is created using artificial intelligence and propose an intermediate information layer. The underlying ontologies can provide background knowledge for possible autonomous intelligent agents in the future. We conclude that making materials science data understandable to machines is still a long way to go and the usefulness of semantic technologies in the domain of materials science is at the moment very limited.
 
Files in this item
Thumbnail
dissertation_lenz-himmer_maja-olivia.pdf — Adobe PDF — 11.94 Mb
MD5: 936cc5da05c84d2967fdf080313339d9
Cite
BibTeX
EndNote
RIS
(CC BY-SA 4.0) Attribution-ShareAlike 4.0 International(CC BY-SA 4.0) Attribution-ShareAlike 4.0 International(CC BY-SA 4.0) Attribution-ShareAlike 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/24340
Permanent URL
https://doi.org/10.18452/24340
HTML
<a href="https://doi.org/10.18452/24340">https://doi.org/10.18452/24340</a>