Show simple item record

2020-05-14Zeitschriftenartikel DOI: 10.3390/plants9050627
Ascorbic Acid Induces the Increase of Secondary Metabolites, Antioxidant Activity, Growth, and Productivity of the Common Bean under Water Stress Conditions
dc.contributor.authorGaafar, Alaa A.
dc.contributor.authorAli, Sami
dc.contributor.authorEl-Shawadfy, Mohamed A.
dc.contributor.authorSalama, Zeinab
dc.contributor.authorSękara, Agnieszka
dc.contributor.authorUlrichs, Christian
dc.contributor.authorAbdelhamid, Magdi
dc.date.accessioned2022-05-11T09:21:00Z
dc.date.available2022-05-11T09:21:00Z
dc.date.issued2020-05-14none
dc.date.updated2020-06-11T07:35:06Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/25327
dc.description.abstractOne of the most vital environmental factors that restricts plant production in arid and semi-arid environments is the lack of fresh water and drought stress. Common bean (Phaseolus vulgaris L.) productivity is severely limited by abiotic stress, especially climate-related constraints. Therefore, a field experiment in split-plot design was carried out to examine the potential function of ascorbic acid (AsA) in mitigating the adverse effects of water stress on common bean. The experiment included two irrigation regimes (100% or 50% of crop evapotranspiration) and three AsA doses (0, 200, or 400 mg L−1 AsA). The results revealed that water stress reduced common bean photosynthetic pigments (chlorophyll and carotenoids), carbonic anhydrase activity, antioxidant activities (2,2-diphenyl-1-picrylhydrazyl free radical activity scavenging activity and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation assay), growth and seed yield, while increased enzymatic antioxidants (peroxidase), secondary metabolites (phenolic, flavonoids, and tannins), malondialdehyde (MDA), and crop water productivity. In contrast, the AsA foliar spray enhanced all studied traits and the enhancement was gradual with the increasing AsA dose. The linear regression model predicted that when the AsA dose increase by 1.0 mg L−1, the seed yield is expected to increase by 0.06 g m−2. Enhanced water stress tolerance through adequate ascorbic acid application is a promising strategy to increase the tolerance and productivity of common bean under water stress. Moreover, the response of common bean to water deficit appears to be dependent on AsA dose.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectascorbic acideng
dc.subjectantioxidant systemseng
dc.subjectdrought stresseng
dc.subject<i>Phaseolus vulgaris</i>eng
dc.subjectsecondary metaboliteseng
dc.subjectyieldeng
dc.subject.ddc580 Pflanzen (Botanik)none
dc.titleAscorbic Acid Induces the Increase of Secondary Metabolites, Antioxidant Activity, Growth, and Productivity of the Common Bean under Water Stress Conditionsnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/25327-7
dc.identifier.doi10.3390/plants9050627none
dc.identifier.doihttp://dx.doi.org/10.18452/24661
local.edoc.container-titlePlantsnone
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameMDPInone
local.edoc.container-publisher-placeBaselnone
local.edoc.container-volume9none
local.edoc.container-issue5none
local.edoc.container-articlenumber627none
dc.identifier.eissn2223-7747

Show simple item record