Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2022-05-30Kumulative Dissertation DOI: 10.18452/24146
Score-Based Approaches to Heterogeneity in Psychological Models
Arnold, Manuel cc
Lebenswissenschaftliche Fakultät
Statistische Modelle menschlicher Kognition und Verhaltens stützen sich häufig auf aggregierte Daten und vernachlässigen dadurch oft Heterogenität in Form von Unterschieden zwischen Personen oder Gruppen. Die Nichtberücksichtigung vorliegender Heterogenität kann zu verzerrten Parameterschätzungen und zu falsch positiven oder falsch negativen Tests führen. Häufig kann Heterogenität mithilfe von Kovariaten erkannt und vorhergesagt werden. Allerdings erweist sich die Identifizierung von Prädiktoren von Heterogenität oft als schwierige Aufgabe. Zur Lösung dieses Problems schlage ich zwei neue Ansätze vor, um individuelle und gruppenspezifische Unterschiede mithilfe von Kovariaten vorherzusagen. Die vorliegende kumulative Dissertation setzt sich aus drei Projekten zusammen. Projekt 1 widmet sich dem Verfahren IPC-Regression (Individual Parameter Contribution), welches die Exploration von Parameterheterogenität in Strukturgleichungsmodellen (SEM) mittels Kovariaten erlaubt. Unter anderem evaluiere ich IPC-Regression für dynamische Panel-Modelle, schlage eine alternative Schätzmethode vor und leite IPCs für allgemeine Maximum-Likelihood-Schätzer her. Projekt 2 veranschaulicht, wie IPC-Regression in der Praxis eingesetzt werden kann. Dazu führe ich schrittweise in die Implementierung von IPC-Regression im ipcr-Paket für die statistische Programmiersprache R ein. Schließlich werden in Projekt 3 SEM-Trees weiterentwickelt. SEM-Trees sind eine modellbasierte rekursive Partitionierungsmethode zur Identifizierung von Kovariaten, die Gruppenunterschiede in SEM-Parametern vorhersagen. Die bisher verwendeten SEM-Trees sind sehr rechenaufwendig. In Projekt 3 kombiniere ich SEM-Trees mit unterschiedlichen Score-basierten Tests. Die daraus resultierenden Score-Guided-SEM-Tees lassen sich deutlich schneller als herkömmlichen SEM-Trees berechnen und zeigen bessere statistische Eigenschaften.
 
Statistical models of human cognition and behavior often rely on aggregated data and may fail to consider heterogeneity, that is, differences across individuals or groups. If overlooked, heterogeneity can bias parameter estimates and may lead to false-positive or false-negative findings. Often, heterogeneity can be detected and predicted with the help of covariates. However, identifying predictors of heterogeneity can be a challenging task. To solve this issue, I propose two novel approaches for detecting and predicting individual and group differences with covariates. This cumulative dissertation is composed of three projects. Project 1 advances the individual parameter contribution (IPC) regression framework, which allows studying heterogeneity in structural equation model (SEM) parameters by means of covariates. I evaluate the use of IPC regression for dynamic panel models, propose an alternative estimation technique, and derive IPCs for general maximum likelihood estimators. Project 2 illustrates how IPC regression can be used in practice. To this end, I provide a step-by-step introduction to the IPC regression implementation in the ipcr package for the R system for statistical computing. Finally, Project 3 progresses the SEM tree framework. SEM trees are a model-based recursive partitioning method for finding covariates that predict group differences in SEM parameters. Unfortunately, the original SEM tree implementation is computationally demanding. As a solution to this problem, I combine SEM trees with a family of score-based tests. The resulting score-guided SEM trees compute quickly, solving the runtime issues of the original SEM trees, and show favorable statistical properties.
 
Files in this item
Thumbnail
dissertation_arnold_manuel.pdf — Adobe PDF — 2.343 Mb
MD5: ff092719ac56c55016354686c3e8a560
References
Has Part: https://doi.org/10.1080/10705511.2019.1667240
Has Part: https://doi.org/10.3389/fpsyg.2020.564403
Has Part: https://doi.org/10.3390/psych3030027
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/24146
Permanent URL
https://doi.org/10.18452/24146
HTML
<a href="https://doi.org/10.18452/24146">https://doi.org/10.18452/24146</a>