Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2020-07-23Zeitschriftenartikel DOI: 10.3389/fncom.2020.00069
Perspective Taking in Deep Reinforcement Learning Agents
Labash, Aqeel
Aru, Jaan cc
Matiisen, Tambet
Tampuu, Ardi cc
Vicente, Raul cc
Lebenswissenschaftliche Fakultät
Perspective taking is the ability to take into account what the other agent knows. This skill is not unique to humans as it is also displayed by other animals like chimpanzees. It is an essential ability for social interactions, including efficient cooperation, competition, and communication. Here we present our progress toward building artificial agents with such abilities. We implemented a perspective taking task inspired by experiments done with chimpanzees. We show that agents controlled by artificial neural networks can learn via reinforcement learning to pass simple tests that require some aspects of perspective taking capabilities. We studied whether this ability is more readily learned by agents with information encoded in allocentric or egocentric form for both their visual perception and motor actions. We believe that, in the long run, building artificial agents with perspective taking ability can help us develop artificial intelligence that is more human-like and easier to communicate with.
Files in this item
Thumbnail
fncom-14-00069.pdf — Adobe PDF — 1.864 Mb
MD5: 53a993446a0a6062eefd8c3eaa9c3235
Notes
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3389/fncom.2020.00069
Permanent URL
https://doi.org/10.3389/fncom.2020.00069
HTML
<a href="https://doi.org/10.3389/fncom.2020.00069">https://doi.org/10.3389/fncom.2020.00069</a>