From Data to Causes II: Comparing Approaches to Panel Data Analysis
dc.contributor.author | Zyphur, Michael | |
dc.contributor.author | Voelkle, Manuel | |
dc.contributor.author | Tay, Louis | |
dc.contributor.author | Allison, Paul D. | |
dc.contributor.author | Preacher, Kristopher | |
dc.contributor.author | Zhang, Zhen | |
dc.contributor.author | Hamaker, Ellen L. | |
dc.contributor.author | Shamsollahi, Ali | |
dc.contributor.author | Pierides, Dean C. | |
dc.contributor.author | Koval, Peter | |
dc.contributor.author | Diener, Ed | |
dc.date.accessioned | 2022-06-28T10:21:43Z | |
dc.date.available | 2022-06-28T10:21:43Z | |
dc.date.issued | 2020-10 | none |
dc.date.updated | 2020-08-08T20:19:08Z | |
dc.identifier.issn | 1094-4281 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/25529 | |
dc.description | Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich. | none |
dc.description.abstract | This article compares a general cross-lagged model (GCLM) to other panel data methods based on their coherence with a causal logic and pragmatic concerns regarding modeled dynamics and hypothesis testing. We examine three “static” models that do not incorporate temporal dynamics: random- and fixed-effects models that estimate contemporaneous relationships; and latent curve models. We then describe “dynamic” models that incorporate temporal dynamics in the form of lagged effects: cross-lagged models estimated in a structural equation model (SEM) or multilevel model (MLM) framework; Arellano-Bond dynamic panel data methods; and autoregressive latent trajectory models. We describe the implications of overlooking temporal dynamics in static models and show how even popular cross-lagged models fail to control for stable factors over time. We also show that Arellano-Bond and autoregressive latent trajectory models have various shortcomings. By contrasting these approaches, we clarify the benefits and drawbacks of common methods for modeling panel data, including the GCLM approach we propose. We conclude with a discussion of issues regarding causal inference, including difficulties in separating different types of time-invariant and time-varying effects over time. | eng |
dc.description.sponsorship | Australian Research Council https://doi.org/10.13039/501100000923 | |
dc.language.iso | eng | none |
dc.publisher | Humboldt-Universität zu Berlin | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | panel data model | eng |
dc.subject | causal inference | eng |
dc.subject | cross-lagged model | eng |
dc.subject | Granger causality | eng |
dc.subject | structural equation model | eng |
dc.subject | multilevel model | eng |
dc.subject | latent curve model | eng |
dc.subject | latent growth model | eng |
dc.subject | Arellano-Bond methods | eng |
dc.subject.ddc | 150 Psychologie | none |
dc.title | From Data to Causes II: Comparing Approaches to Panel Data Analysis | none |
dc.type | article | |
dc.identifier.urn | urn:nbn:de:kobv:11-110-18452/25529-2 | |
dc.identifier.doi | 10.1177/1094428119847280 | none |
dc.identifier.doi | http://dx.doi.org/10.18452/24849 | |
dc.type.version | publishedVersion | none |
local.edoc.pages | 29 | none |
local.edoc.type-name | Zeitschriftenartikel | |
local.edoc.container-type | periodical | |
local.edoc.container-type-name | Zeitschrift | |
dc.description.version | Peer Reviewed | none |
dc.identifier.eissn | 1552-7425 | |
dcterms.bibliographicCitation.journaltitle | Organizational Research Methods | none |
dcterms.bibliographicCitation.volume | 23 | none |
dcterms.bibliographicCitation.issue | 4 | none |
dcterms.bibliographicCitation.originalpublishername | Sage | none |
dcterms.bibliographicCitation.originalpublisherplace | London [u.a.] | none |
dcterms.bibliographicCitation.pagestart | 688 | none |
dcterms.bibliographicCitation.pageend | 716 | none |
bua.import.affiliation | Zyphur, Michael J.; Department of Management & Marketing, Business & Economics, University of Melbourne, Melbourne, Australia | none |
bua.import.affiliation | Voelkle, Manuel C.; Institut für Psychologie, Humboldt University Berlin, Berlin, Germany | none |
bua.import.affiliation | Tay, Louis; Department of Psychology, Purdue University, West Lafayette, IN, USA | none |
bua.import.affiliation | Allison, Paul D.; Department of Sociology, University of Pennsylvania, Philadelphia, PA, USA | none |
bua.import.affiliation | Preacher, Kristopher J.; Department of Psychology & Human Development, Vanderbilt University, Nashville, TN, USA | none |
bua.import.affiliation | Zhang, Zhen; Department of Management, W. P. Carey School of Business, Arizona State University, Tempe, AZ, USA | none |
bua.import.affiliation | Hamaker, Ellen L.; Department of Methods and Statistics, Utrecht University, Utrecht, Netherlands | none |
bua.import.affiliation | Shamsollahi, Ali; ESSEC Business School, Cergy-Pontoise, France | none |
bua.import.affiliation | Pierides, Dean C.; Department of Management Work and Organisation, University of Stirling, Stirling, USA | none |
bua.import.affiliation | Koval, Peter; Department of Psychology, University of Melbourne, Melbourne, Australia | none |
bua.import.affiliation | Diener, Ed; Department of Psychology, University of Utah, Salt Lake City, UT, USA | none |
bua.department | Lebenswissenschaftliche Fakultät | none |