Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2020-09-04Zeitschriftenartikel DOI: 10.3390/app10186165
Characterization and Prediction of Air Transport Delays in China
Zanin, Massimiliano cc
Zhu, Yanbo
Yan, Ran
Dong, Peiji
Xiaoqian Sun, Xiaoqian Sun cc
Wandelt, Sebastian
Mathematisch-Naturwissenschaftliche Fakultät
Air transport delays are a major source of direct and opportunity costs in modern societies, being this problem is especially important in the case of China. In spite of this, our knowledge on delay generation is mostly based on intuition, and the scientific community has hitherto devoted little attention to this topic. We here present the first data-driven systemic study of air transport delays in China, of their evolution and causes, based on 11 million flights between 2016 and 2018. A significant fraction of the delays can be explained by a few variables, e.g., weather conditions and traffic levels, the most important factors being the presence of thunderstorms and the season of the year. Remaining delays can often be explained by en-route weather phenomena or by reactionary delays. This study contributes towards a better understanding of delays and their prediction through a data-driven methodology, leveraging on statistics and data mining concepts.
Files in this item
Thumbnail
applsci-10-06165-v2.pdf — Adobe PDF — 1.045 Mb
MD5: 6af584779e4472fd6be6abdeee5e1f97
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3390/app10186165
Permanent URL
https://doi.org/10.3390/app10186165
HTML
<a href="https://doi.org/10.3390/app10186165">https://doi.org/10.3390/app10186165</a>