Show simple item record

2019-07-22Zeitschriftenartikel DOI: 10.1088/1748-9326/ab2b4b
Freshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °C
dc.contributor.authorStenzel, Fabian
dc.contributor.authorGerten, Dieter
dc.contributor.authorWerner, Constanze
dc.contributor.authorJägermeyr, Jonas
dc.date.accessioned2022-07-06T09:49:09Z
dc.date.available2022-07-06T09:49:09Z
dc.date.issued2019-07-22none
dc.date.updated2022-01-29T01:42:21Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/25624
dc.description.abstractLimiting mean global warming to well below 2 °C will probably require substantial negative emissions (NEs) within the 21st century. To achieve these, bioenergy plantations with subsequent carbon capture and storage (BECCS) may have to be implemented at a large scale. Irrigation of these plantations might be necessary to increase the yield, which is likely to put further pressure on already stressed freshwater systems. Conversely, the potential of bioenergy plantations (BPs) dedicated to achieving NEs through CO2 assimilation may be limited in regions with low freshwater availability. This paper provides a first-order quantification of the biophysical potentials of BECCS as a negative emission technology contribution to reaching the 1.5 °C warming target, as constrained by associated water availabilities and requirements. Using a global biosphere model, we analyze the availability of freshwater for irrigation of BPs designed to meet the projected NEs to fulfill the 1.5 °C target, spatially explicitly on areas not reserved for ecosystem conservation or agriculture. We take account of the simultaneous water demands for agriculture, industries, and households and also account for environmental flow requirements (EFRs) needed to safeguard aquatic ecosystems. Furthermore, we assess to what extent different forms of improved water management on the suggested BPs and on cropland may help to reduce the freshwater abstractions. Results indicate that global water withdrawals for irrigation of BPs range between ∼400 and ∼3000 km3 yr−1, depending on the scenario and the conversion efficiency of the carbon capture and storage process. Consideration of EFRs reduces the NE potential significantly, but can partly be compensated for by improved on-field water management.eng
dc.description.sponsorshipUniversity of Chicago Center for Robust Decision-making on Climate and Energy Policy
dc.description.sponsorshipBMBF project BioCAP-CCS
dc.description.sponsorshipDeutsche Forschungsgemeinschaft SPP 1689 on ‘Climate Engineering: Risks, Challenges, Opportunities?’
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 3.0) Attribution 3.0 Unportedger
dc.rights.urihttps://creativecommons.org/licenses/by/3.0/
dc.subjectBECCSeng
dc.subjectwater demandeng
dc.subjectirrigationeng
dc.subjectnegative emissionseng
dc.subjectenvironmental flow requirementseng
dc.subjectclimate changeeng
dc.subjectbioenergy plantationseng
dc.subject.ddc758 Natur, architektonische Objekte und Stadtlandschaften, einzelne andere Themennone
dc.titleFreshwater requirements of large-scale bioenergy plantations for limiting global warming to 1.5 °Cnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/25624-6
dc.identifier.doi10.1088/1748-9326/ab2b4bnone
dc.identifier.doihttp://dx.doi.org/10.18452/24942
dc.type.versionpublishedVersionnone
local.edoc.container-titleEnvironmental research lettersnone
local.edoc.pages13none
local.edoc.type-nameZeitschriftenartikel
local.edoc.institutionMathematisch-Naturwissenschaftliche Fakultätnone
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameIOP Publishingnone
local.edoc.container-publisher-placeBristolnone
local.edoc.container-volume14none
local.edoc.container-issue8none
local.edoc.container-year2019none
dc.description.versionPeer Reviewednone
local.edoc.container-articlenumber084001none
dc.identifier.eissn1748-9326

Show simple item record