Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2022-03-10Zeitschriftenartikel DOI: 10.1002/hyp.14532
Estimates of water partitioning in complex urban landscapes with isotope‐aided ecohydrological modelling
Gillefalk, Mikael cc
Tetzlaff, Doerthe cc
Marx, Christian cc
Smith, Aaron cc
Meier, Fred cc
Hinkelmann, Reinhard cc
Soulsby, Chris cc
Mathematisch-Naturwissenschaftliche Fakultät
Urban green space is increasingly viewed as essential infrastructure to build resilience to climate change by retaining water in the city landscape and balancing ecohydrological partitioning into evapotranspiration for cooling and groundwater recharge. Quantifying how different vegetation types affect water partitioning is essential for future management, but paucity of data and the complex heterogeneity of urban areas make water balance estimates challenging. Here, we provide a preliminary assessment of water partitioning from different sized patches of trees and grass as well as from sealed surfaces. To do this, we used limited field observations together with an advanced, process-based tracer-aided ecohydrological model at a meso-scale (5 km2) in central Berlin, Germany. Transpiration was the dominant green water flux accounting for over 50% of evapotranspiration in the modelled area. Green water fluxes were in general greater from trees compared with grass, but grass in large parks transpired more water compared with grass in small parks that were intensively used for recreation. Interception evaporation was larger for trees compared with grass, but soil water evaporation was greater for grass compared with trees. We also show that evapotranspiration from tree-covered areas comprise almost 80% of the total evapotranspiration from the whole model domain while making up less than 30% of the surface cover. The results form an important stepping-stone towards further upscaling over larger areas and highlights the importance of continuous high-resolution hydrological measurements in the urban landscape, as well as the need for improvements to ecohydrological models to capture important urban processes.
Files in this item
Thumbnail
HYP_HYP14532.pdf — Adobe PDF — 2.478 Mb
MD5: 304569d0d73e1129cbde20a7b279ccee
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1002/hyp.14532
Permanent URL
https://doi.org/10.1002/hyp.14532
HTML
<a href="https://doi.org/10.1002/hyp.14532">https://doi.org/10.1002/hyp.14532</a>