Zur Kurzanzeige

2019-12-31Zeitschriftenartikel DOI: 10.18452/24967
Global Response Patterns of Major Rainfed Crops to Adaptation by Maintaining Current Growing Periods and Irrigation
dc.contributor.authorMinoli, Sara
dc.contributor.authorMüller, Christoph
dc.contributor.authorElliott, Joshua
dc.contributor.authorRuane, Alex
dc.contributor.authorJägermeyr, Jonas
dc.contributor.authorZabel, Florian
dc.contributor.authorDury, Marie
dc.contributor.authorFolberth, Christian
dc.contributor.authorFrançois, Louis
dc.contributor.authorHank, Tobias
dc.contributor.authorJacquemin, Ingrid
dc.contributor.authorLiu, Wenfeng
dc.contributor.authorOlin, Stefan
dc.contributor.authorPugh, Thomas
dc.date.accessioned2022-07-07T08:27:50Z
dc.date.available2022-07-07T08:27:50Z
dc.date.issued2019-12-31none
dc.date.updated2020-10-12T10:15:52Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/25651
dc.description.abstractIncreasing temperature trends are expected to impact yields of major field crops by affecting various plant processes, such as phenology, growth, and evapotranspiration. However, future projections typically do not consider the effects of agronomic adaptation in farming practices. We use an ensemble of seven Global Gridded Crop Models to quantify the impacts and adaptation potential of field crops under increasing temperature up to 6 K, accounting for model uncertainty. We find that without adaptation, the dominant effect of temperature increase is to shorten the growing period and to reduce grain yields and production. We then test the potential of two agronomic measures to combat warming-induced yield reduction: (i) use of cultivars with adjusted phenology to regain the reference growing period duration and (ii) conversion of rainfed systems to irrigated ones in order to alleviate the negative temperature effects that are mediated by crop evapotranspiration. We find that cultivar adaptation can fully compensate global production losses up to 2 K of temperature increase, with larger potentials in continental and temperate regions. Irrigation could also compensate production losses, but its potential is highest in arid regions, where irrigation expansion would be constrained by water scarcity. Moreover, we discuss that irrigation is not a true adaptation measure but rather an intensification strategy, as it equally increases production under any temperature level. In the tropics, even when introducing both adapted cultivars and irrigation, crop production declines already at moderate warming, making adaptation particularly challenging in these areas.eng
dc.description.abstractPlain Language Summary: Global warming affects yields of grain crops, which are at the base of human diets. We use crop models to quantify its impacts on global crop production and to assess how adaptation could compensate for the adverse effects. We find that up to 2 K of increased temperature production can be maintained at the current level by using new cultivars, selected to maintain current growing period length under warming. Irrigation, as another management strategy, is shown to have the potential to increase yields in dry regions if water is available. However, models do not indicate that irrigation reduces the crops' sensitivity to warming. We find large differences in the yield response to warming and adaptation across climatic regions. While continental and temperate regions may benefit from higher temperatures but also show sizable adaptation potentials, tropical and arid regions show largest temperature impacts and smaller adaptation potentials. After all, these two crop management options appear effective to balance the effects of moderate warming but cannot fully compensate impacts above 2 K of warming.eng
dc.description.sponsorshipEarly Postdoctoral Mobility Fellowship http://dx.doi.org/10.13039/501100001711
dc.description.sponsorship7th Framework Programme Early http://dx.doi.org/10.13039/100013273
dc.description.sponsorshipMACMIT project
dc.description.sponsorshipBioNex Project
dc.description.sponsorshipUniversity of Chicago Center for Robust Decision‐making on Climate and Energy Policy http://dx.doi.org/10.13039/100006445
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjecttemperature increaseeng
dc.subjectcrop yieldeng
dc.subjectadaptationeng
dc.subjectgrowing periodeng
dc.subjectirrigationeng
dc.subjectcrop modeleng
dc.subject.ddc550 Geowissenschaftenger
dc.titleGlobal Response Patterns of Major Rainfed Crops to Adaptation by Maintaining Current Growing Periods and Irrigationnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/25651-6
dc.identifier.doihttp://dx.doi.org/10.18452/24967
dc.type.versionpublishedVersionnone
local.edoc.pages17none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dcterms.bibliographicCitation.doi10.1029/2018EF001130none
dcterms.bibliographicCitation.journaltitleEarth's Futurenone
dcterms.bibliographicCitation.volume7none
dcterms.bibliographicCitation.issue12none
dcterms.bibliographicCitation.originalpublishernameWiley-Blackwellnone
dcterms.bibliographicCitation.originalpublisherplaceHobokennone
dcterms.bibliographicCitation.pagestart1464none
dcterms.bibliographicCitation.pageend1480none
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Zur Kurzanzeige