Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2013-02-19Zeitschriftenartikel DOI: 10.1088/1748-9326/8/1/014026
Contribution of permafrost soils to the global carbon budget
Schaphoff, Sibyll cc
Heyder, Ursula
Ostberg, Sebastian cc
Gerten, Dieter cc
Heinke, Jens
Lucht, Wolfgang cc
Mathematisch-Naturwissenschaftliche Fakultät
Climate warming affects permafrost soil carbon pools in two opposing ways: enhanced vegetation growth leads to higher carbon inputs to the soil, whereas permafrost melting accelerates decomposition and hence carbon release. Here, we study the spatial and temporal dynamics of these two processes under scenarios of climate change and evaluate their influence on the carbon balance of the permafrost zone. We use the dynamic global vegetation model LPJmL, which simulates plant physiological and ecological processes and includes a newly developed discrete layer energy balance permafrost module and a vertical carbon distribution within the soil layer. The model is able to reproduce the interactions between vegetation and soil carbon dynamics as well as to simulate dynamic permafrost changes resulting from changes in the climate. We find that vegetation responds more rapidly to warming of the permafrost zone than soil carbon pools due to long time lags in permafrost thawing, and that the initial simulated net uptake of carbon may continue for some decades of warming. However, once the turning point is reached, if carbon release exceeds uptake, carbon is lost irreversibly from the system and cannot be compensated for by increasing vegetation carbon input. Our analysis highlights the importance of including dynamic vegetation and long-term responses into analyses of permafrost zone carbon budgets.
Files in this item
Thumbnail
erl13_1_014026.pdf — Adobe PDF — 2.296 Mb
MD5: 746b5182cb38d58a5bf335e0a895633f
Cite
BibTeX
EndNote
RIS
(CC BY-NC-SA 3.0) Attribution-NonCommercial-ShareAlike 3.0 Unported(CC BY-NC-SA 3.0) Attribution-NonCommercial-ShareAlike 3.0 Unported(CC BY-NC-SA 3.0) Attribution-NonCommercial-ShareAlike 3.0 Unported(CC BY-NC-SA 3.0) Attribution-NonCommercial-ShareAlike 3.0 Unported
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1088/1748-9326/8/1/014026
Permanent URL
https://doi.org/10.1088/1748-9326/8/1/014026
HTML
<a href="https://doi.org/10.1088/1748-9326/8/1/014026">https://doi.org/10.1088/1748-9326/8/1/014026</a>