Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2015-06-01Zeitschriftenartikel DOI: 10.1088/1367-2630/17/6/065001
A high-flux BEC source for mobile atom interferometers
Rudolph, Jan
Herr, Waldemar
Grzeschik, Christoph
Sternke, Tammo
Grote, Alexander
Popp, Manuel
Becker, Dennis
Müntinga, Hauke
Ahlers, Holger
Peters, Achim
Lämmerzahl, Claus
Sengstock, Klaus
Gaaloul, Naceur
Ertmer, Wolfgang cc
Rasel, Ernst M
Mathematisch-Naturwissenschaftliche Fakultät
Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose–Einstein condensates (BECs) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a challenging endeavor. Here we report on the realization of a miniaturized setup, generating a flux of $4\times {{10}^{5}}$ quantum degenerate 87Rb atoms every 1.6 s. Ensembles of $1\times {{10}^{5}}$ atoms can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based BEC experiments while offering significantly higher repetition rates. Additionally, the flux is approaching those of current interferometers employing Raman-type velocity selection of laser-cooled atoms. The compact and robust design allows for mobile operation in a variety of demanding environments and paves the way for transportable high-precision quantum sensors.
Files in this item
Thumbnail
njp_17_6_065001.pdf — Adobe PDF — 1.774 Mb
MD5: be30c120075f91964f6686c17ca7d991
Cite
BibTeX
EndNote
RIS
(CC BY 3.0) Attribution 3.0 Unported(CC BY 3.0) Attribution 3.0 Unported
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1088/1367-2630/17/6/065001
Permanent URL
https://doi.org/10.1088/1367-2630/17/6/065001
HTML
<a href="https://doi.org/10.1088/1367-2630/17/6/065001">https://doi.org/10.1088/1367-2630/17/6/065001</a>