Graphene Oxide‐Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple‐Drug Resistance
dc.contributor.author | Tu, Zhaoxu | |
dc.contributor.author | Donskyi, Ievgen | |
dc.contributor.author | Qiao, Haishi | |
dc.contributor.author | Zhu, Zhonglin | |
dc.contributor.author | Unger, Wolfgang E. S. | |
dc.contributor.author | Hackenberger, Christian | |
dc.contributor.author | Chen, Wei | |
dc.contributor.author | Adeli, Mohsen | |
dc.contributor.author | Haag, Rainer | |
dc.date.accessioned | 2022-08-04T11:58:02Z | |
dc.date.available | 2022-08-04T11:58:02Z | |
dc.date.issued | 2020-06-26 | none |
dc.date.updated | 2020-11-09T15:46:23Z | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/25741 | |
dc.description.abstract | Multidrug resistance resulting from a variety of defensive pathways in cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, high-loading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers. | eng |
dc.description.sponsorship | National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809 | |
dc.description.sponsorship | Natural Science Foundation of Jiangsu Province http://dx.doi.org/10.13039/501100004608 | |
dc.description.sponsorship | Fundamental Research Funds for the Central Universities http://dx.doi.org/10.13039/501100012226 | |
dc.description.sponsorship | Iran Science Elites Federation and China Scholarship Council | |
dc.language.iso | eng | none |
dc.publisher | Humboldt-Universität zu Berlin | |
dc.rights | (CC BY 4.0) Attribution 4.0 International | ger |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | cyclic cell penetrating peptide | eng |
dc.subject | graphene oxide | eng |
dc.subject | multidrug resistance | eng |
dc.subject | nuclear targeting | eng |
dc.subject | synergistic therapy | eng |
dc.subject.ddc | 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten | none |
dc.subject.ddc | 530 Physik | none |
dc.subject.ddc | 540 Chemie und zugeordnete Wissenschaften | none |
dc.title | Graphene Oxide‐Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple‐Drug Resistance | none |
dc.type | article | |
dc.identifier.urn | urn:nbn:de:kobv:11-110-18452/25741-6 | |
dc.identifier.doi | http://dx.doi.org/10.18452/25058 | |
dc.type.version | publishedVersion | none |
local.edoc.pages | 10 | none |
local.edoc.type-name | Zeitschriftenartikel | |
local.edoc.container-type | periodical | |
local.edoc.container-type-name | Zeitschrift | |
dc.description.version | Peer Reviewed | none |
dc.identifier.eissn | 1616-3028 | |
dcterms.bibliographicCitation.doi | 10.1002/adfm.202000933 | none |
dcterms.bibliographicCitation.journaltitle | Advanced Functional Materials | none |
dcterms.bibliographicCitation.volume | 30 | none |
dcterms.bibliographicCitation.issue | 35 | none |
dcterms.bibliographicCitation.articlenumber | 2000933 | none |
dcterms.bibliographicCitation.originalpublishername | Wiley-VCH | none |
dcterms.bibliographicCitation.originalpublisherplace | Weinheim | none |
bua.department | Mathematisch-Naturwissenschaftliche Fakultät | none |