Show simple item record

2020-06-26Zeitschriftenartikel DOI: 10.18452/25058
Graphene Oxide‐Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple‐Drug Resistance
dc.contributor.authorTu, Zhaoxu
dc.contributor.authorDonskyi, Ievgen
dc.contributor.authorQiao, Haishi
dc.contributor.authorZhu, Zhonglin
dc.contributor.authorUnger, Wolfgang E. S.
dc.contributor.authorHackenberger, Christian
dc.contributor.authorChen, Wei
dc.contributor.authorAdeli, Mohsen
dc.contributor.authorHaag, Rainer
dc.date.accessioned2022-08-04T11:58:02Z
dc.date.available2022-08-04T11:58:02Z
dc.date.issued2020-06-26none
dc.date.updated2020-11-09T15:46:23Z
dc.identifier.urihttp://edoc.hu-berlin.de/18452/25741
dc.description.abstractMultidrug resistance resulting from a variety of defensive pathways in cancer has become a global concern with a considerable impact on the mortality associated with the failure of traditional chemotherapy. Therefore, further research and new therapies are required to overcome this challenge. In this work, a cyclic R10 peptide (cR10) is conjugated to polyglycerol-covered nanographene oxide to engineer a nanoplatform for the surmounting of multidrug resistance. The nuclear translocation of the nanoplatform, facilitated by cR10 peptide, and subsequently, a laser-triggered release of the loaded doxorubicin result in efficient anticancer activity confirmed by both in vitro and in vivo experiments. The synthesized nanoplatform with a combination of different features, including active nucleus-targeting, high-loading capacity, controlled release of cargo, and photothermal property, provides a new strategy for circumventing multidrug resistant cancers.eng
dc.description.sponsorshipNational Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
dc.description.sponsorshipNatural Science Foundation of Jiangsu Province http://dx.doi.org/10.13039/501100004608
dc.description.sponsorshipFundamental Research Funds for the Central Universities http://dx.doi.org/10.13039/501100012226
dc.description.sponsorshipIran Science Elites Federation and China Scholarship Council
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectcyclic cell penetrating peptideeng
dc.subjectgraphene oxideeng
dc.subjectmultidrug resistanceeng
dc.subjectnuclear targetingeng
dc.subjectsynergistic therapyeng
dc.subject.ddc620 Ingenieurwissenschaften und zugeordnete Tätigkeitennone
dc.subject.ddc530 Physiknone
dc.subject.ddc540 Chemie und zugeordnete Wissenschaftennone
dc.titleGraphene Oxide‐Cyclic R10 Peptide Nuclear Translocation Nanoplatforms for the Surmounting of Multiple‐Drug Resistancenone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/25741-6
dc.identifier.doihttp://dx.doi.org/10.18452/25058
dc.type.versionpublishedVersionnone
local.edoc.pages10none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
dc.description.versionPeer Reviewednone
dc.identifier.eissn1616-3028
dcterms.bibliographicCitation.doi10.1002/adfm.202000933none
dcterms.bibliographicCitation.journaltitleAdvanced Functional Materialsnone
dcterms.bibliographicCitation.volume30none
dcterms.bibliographicCitation.issue35none
dcterms.bibliographicCitation.articlenumber2000933none
dcterms.bibliographicCitation.originalpublishernameWiley-VCHnone
dcterms.bibliographicCitation.originalpublisherplaceWeinheimnone
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record