Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2020-04-27Zeitschriftenartikel DOI: 10.1002/batt.202000042
Hollow MoS3 Nanospheres as Electrode Material for “Water‐in‐Salt” Li–Ion Batteries
Quan, Ting
Xu, Yaolin cc
Tovar, Michael
Goubard-Bretesché, Nicolas cc
Li, Zhaolong
Kochovski, Zdravko
Kirmse, Holm
Skrodczky, Kai
Mei, Shilin
Yu, Hongtao
Abou‐Ras, Daniel
Wagemaker, Marnix cc
Lu, Yan
Mathematisch-Naturwissenschaftliche Fakultät
The use of “water-in-salt” electrolyte (WISE) (i. e., a highly concentrated aqueous solution) in rechargeable batteries has received increasing attention due to the significantly expanded electrochemical window compared to the limited voltage of conventional aqueous electrolytes. It enables the use of more positive/negative electrode material couples in aqueous batteries, resulting in an enhanced output voltage. However, one of the challenges is to identify promising anode materials for the “water-in-salt” Li-ion batteries (WIS-LIBs). Herein we for the first time demonstrate that MoS3, an amorphous chain-like structured transitional metal trichalcogenide, is promising as anode in the WIS-LIBs. In this work, hollow MoS3 nanospheres were synthesized via a scalable room-temperature acid precipitation method. When applied in WIS-LIBs, the prepared MoS3 achieved a high specific capacity of 127 mAh/g at the current density of 0.1 A/g and good stability over 1000 cycles. During operation, MoS3 underwent irreversible conversion to Li2MoO4 (with H2S and H2 evolution) during the initial Li ion uptake, and was then converted gradually to a more stable and reversible LixMoOy (2≤y≤4)) phase along cycling. Amorphous Li-deficient Lix-mMoOy/MoOz was formed upon delithiation. Nevertheless, MoS3 outperformed MoO3 in WIS-LIBs, which could be accredited to its initial one-dimensional molecular structure and the amorphous nature of the delithiated product facilitating charge transport. These results demonstrated a novel routine for synthesizing metal sulfides with hollow structures using a template-based method and push forward the development of metal sulfides for aqueous energy storage applications.
Files in this item
Thumbnail
BATT_BATT202000042-1.pdf — Adobe PDF — 1.423 Mb
MD5: 2d62cb57417f2829eaf082198f5fb230
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1002/batt.202000042
Permanent URL
https://doi.org/10.1002/batt.202000042
HTML
<a href="https://doi.org/10.1002/batt.202000042">https://doi.org/10.1002/batt.202000042</a>