Logo der Humboldt-Universität zu BerlinLogo der Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Banner: Fassade der Humboldt-Universität zu Berlin
Publikation anzeigen 
  • edoc-Server Startseite
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • Publikation anzeigen
  • edoc-Server Startseite
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • Publikation anzeigen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Publikation anzeigen 
  • edoc-Server Startseite
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • Publikation anzeigen
  • edoc-Server Startseite
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • Publikation anzeigen
2022-06-18Zeitschriftenartikel DOI: 10.3390/su14127468
A GIS-Based Spatiotemporal Modelling of Urban Traffic Accidents in Tabriz City during the COVID-19 Pandemic
Feizizadeh, Bakhtiar cc
Omarzadeh, Davoud cc
Sharifi, Ayyoob cc
Rahmani, Abolfazl
Lakes, Tobia cc
Blaschke, Thomas cc
Mathematisch-Naturwissenschaftliche Fakultät
The main aim of the present study was to investigate the spatiotemporal trends of urban traffic accident hotspots during the COVID-19 pandemic. The severity index was used to determine high-risk areas, and the kernel density estimation method was used to identify risk of traffic accident hotspots. Accident data for the time period of April 2018 to November 2020 were obtained from the traffic police of Tabriz (Iran) and analyzed using GIS spatial and network analysis procedures. To evaluate the impacts of COVID-19, we used the seasonal variation in car accidents to analyze the change in the total number or urban traffic accidents. Eventually, the sustainability of urban transport was analyzed based on the demographic and land use data to identify the areas with a high number of accidents and its respective impacts for the local residences. Based on the results, the lockdown measures in response to the pandemic have led to significant reductions in road traffic accidents. From the perspective of urban planning, the spatiotemporal urban traffic accident analysis indicated that areas with high numbers of elderly people and children were most affected by car accidents. As we identified the hotspots of urban traffic accidents and evaluated their spatiotemporal correlation with land use and demography characteristics, we conclude that the results of this study can be used by urban managers and support decision making to improve the situation, so that fewer accidents will happen in the future.
Dateien zu dieser Publikation
Thumbnail
sustainability-14-07468-v3.pdf — PDF — 22.82 Mb
MD5: 41171f2777ea05747d400265f5b64257
Anmerkungen
The article processing charge was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 491192747 and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
Zitieren
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Zur Langanzeige
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Impressum Leitlinien Kontakt Datenschutzerklärung
Ein Service der Universitätsbibliothek und des Computer- und Medienservice
© Humboldt-Universität zu Berlin
 
DOI
10.3390/su14127468
Permanent URL
https://doi.org/10.3390/su14127468
HTML
<a href="https://doi.org/10.3390/su14127468">https://doi.org/10.3390/su14127468</a>