Logo der Humboldt-Universität zu BerlinLogo der Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Banner: Fassade der Humboldt-Universität zu Berlin
Publikation anzeigen 
  • edoc-Server Startseite
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • Publikation anzeigen
  • edoc-Server Startseite
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • Publikation anzeigen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Publikation anzeigen 
  • edoc-Server Startseite
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • Publikation anzeigen
  • edoc-Server Startseite
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • Publikation anzeigen
2022-06-14Zeitschriftenartikel DOI: 10.3390/s22124506
QADI as a New Method and Alternative to Kappa for Accuracy Assessment of Remote Sensing-Based Image Classification
Feizizadeh, Bakhtiar cc
Darabi, Sadrolah
Blaschke, Thomas cc
Lakes, Tobia cc
Mathematisch-Naturwissenschaftliche Fakultät
Classification is a very common image processing task. The accuracy of the classified map is typically assessed through a comparison with real-world situations or with available reference data to estimate the reliability of the classification results. Common accuracy assessment approaches are based on an error matrix and provide a measure for the overall accuracy. A frequently used index is the Kappa index. As the Kappa index has increasingly been criticized, various alternative measures have been investigated with minimal success in practice. In this article, we introduce a novel index that overcomes the limitations. Unlike Kappa, it is not sensitive to asymmetric distributions. The quantity and allocation disagreement index (QADI) index computes the degree of disagreement between the classification results and reference maps by counting wrongly labeled pixels as A and quantifying the difference in the pixel count for each class between the classified map and reference data as Q. These values are then used to determine a quantitative QADI index value, which indicates the value of disagreement and difference between a classification result and training data. It can also be used to generate a graph that indicates the degree to which each factor contributes to the disagreement. The efficiency of Kappa and QADI were compared in six use cases. The results indicate that the QADI index generates more reliable classification accuracy assessments than the traditional Kappa can do. We also developed a toolbox in a GIS software environment.
Dateien zu dieser Publikation
Thumbnail
sensors-22-04506-v3.pdf — PDF — 5.435 Mb
MD5: a9a866657a816c87d1429cbde2e4f5dc
Zitieren
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Zur Langanzeige
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Impressum Leitlinien Kontakt Datenschutzerklärung
Ein Service der Universitätsbibliothek und des Computer- und Medienservice
© Humboldt-Universität zu Berlin
 
DOI
10.3390/s22124506
Permanent URL
https://doi.org/10.3390/s22124506
HTML
<a href="https://doi.org/10.3390/s22124506">https://doi.org/10.3390/s22124506</a>