Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2014-05-07Zeitschriftenartikel DOI: 10.1088/1367-2630/16/5/053010
Nucleation of reaction-diffusion waves on curved surfaces
Kneer, Frederike
Schöll, Eckehard cc
Dahlem, Markus A
Mathematisch-Naturwissenschaftliche Fakultät
We study reaction-diffusion waves on curved two-dimensional surfaces, and determine the influence of curvature upon the nucleation and propagation of spatially localized waves in an excitable medium modelled by the generic FitzHugh–Nagumo model. We show that the stability of propagating wave segments depends crucially on the curvature of the surface. As they propagate, they may shrink to the uniform steady state, or expand, depending on whether they are smaller or larger, respectively, than a critical nucleus. This critical nucleus for wave propagation is modified by the curvature acting like an effective space-dependent local spatial coupling, similar to diffuson, thus extending the regime of propagating excitation waves beyond the excitation threshold of flat surfaces. In particular, a negative gradient of Gaussian curvature , as on the outside of a torus surface (positive ), when the wave segment symmetrically extends into the inside (negative ), allows for stable propagation of localized wave segments remaining unchanged in size and shape, or oscillating periodically in size.
Files in this item
Thumbnail
NJP_16_5_053010.pdf — Adobe PDF — 1.097 Mb
MD5: 5b700b75eb7338422a0c50178b55f05c
Cite
BibTeX
EndNote
RIS
(CC BY 3.0) Attribution 3.0 Unported(CC BY 3.0) Attribution 3.0 Unported
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1088/1367-2630/16/5/053010
Permanent URL
https://doi.org/10.1088/1367-2630/16/5/053010
HTML
<a href="https://doi.org/10.1088/1367-2630/16/5/053010">https://doi.org/10.1088/1367-2630/16/5/053010</a>