Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2004-10-18Zeitschriftenartikel DOI: 10.18452/23895
Lyapunov 1-forms for flows
Farber, Michael
Kappeler, Thomas
Latschev, Janko
Zehnder, Eduard
Mathematisch-Naturwissenschaftliche Fakultät
In this paper we find conditions which guarantee that a given flow $\Phi$ on a compact metric space X admits a Lyapunov 1-form $\omega$ lying in a prescribed Čech cohomology class $\xi\in\check H^1(X;\mathbb{R})$. These conditions are formulated in terms of the restriction of $\xi$ to the chain recurrent set of $\Phi$. The result of the paper may be viewed as a generalization of a well-known theorem by Conley about the existence of Lyapunov functions.
Files in this item
Thumbnail
lyapunov-1-forms-for-flows.pdf — Adobe PDF — 232.5 Kb
MD5: bc4c49ad774e39b144d17cd61b32e6d5
Notes
This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/23895
Permanent URL
https://doi.org/10.18452/23895
HTML
<a href="https://doi.org/10.18452/23895">https://doi.org/10.18452/23895</a>