Show simple item record

2004-10-18Zeitschriftenartikel DOI: 10.18452/23895
Lyapunov 1-forms for flows
dc.contributor.authorFarber, Michael
dc.contributor.authorKappeler, Thomas
dc.contributor.authorLatschev, Janko
dc.contributor.authorZehnder, Eduard
dc.date.accessioned2022-08-31T12:12:51Z
dc.date.available2022-08-31T12:12:51Z
dc.date.issued2004-10-18none
dc.identifier.issn0143-3857
dc.identifier.other10.1017/S0143385703000762
dc.identifier.urihttp://edoc.hu-berlin.de/18452/25925
dc.description.abstractIn this paper we find conditions which guarantee that a given flow $\Phi$ on a compact metric space X admits a Lyapunov 1-form $\omega$ lying in a prescribed Čech cohomology class $\xi\in\check H^1(X;\mathbb{R})$. These conditions are formulated in terms of the restriction of $\xi$ to the chain recurrent set of $\Phi$. The result of the paper may be viewed as a generalization of a well-known theorem by Conley about the existence of Lyapunov functions.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematiknone
dc.titleLyapunov 1-forms for flowsnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/25925-3
dc.identifier.doihttp://dx.doi.org/10.18452/23895
dc.type.versionpublishedVersionnone
local.edoc.container-titleErgodic Theory and Dynamical Systemsnone
local.edoc.pages25none
local.edoc.anmerkungThis publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.none
local.edoc.type-nameZeitschriftenartikel
local.edoc.institutionMathematisch-Naturwissenschaftliche Fakultätnone
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameCambridge Univ. Pressnone
local.edoc.container-publisher-placeCambridge, Mass.none
local.edoc.container-volume24none
local.edoc.container-issue5none
local.edoc.container-firstpage1451none
local.edoc.container-lastpage1475none
dc.description.versionPeer Reviewednone
dc.identifier.eissn1469-4417

Show simple item record