Lyapunov 1-forms for flows
dc.contributor.author | Farber, Michael | |
dc.contributor.author | Kappeler, Thomas | |
dc.contributor.author | Latschev, Janko | |
dc.contributor.author | Zehnder, Eduard | |
dc.date.accessioned | 2022-08-31T12:12:51Z | |
dc.date.available | 2022-08-31T12:12:51Z | |
dc.date.issued | 2004-10-18 | none |
dc.identifier.issn | 0143-3857 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/25925 | |
dc.description | This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. | none |
dc.description.abstract | In this paper we find conditions which guarantee that a given flow $\Phi$ on a compact metric space X admits a Lyapunov 1-form $\omega$ lying in a prescribed Čech cohomology class $\xi\in\check H^1(X;\mathbb{R})$. These conditions are formulated in terms of the restriction of $\xi$ to the chain recurrent set of $\Phi$. The result of the paper may be viewed as a generalization of a well-known theorem by Conley about the existence of Lyapunov functions. | eng |
dc.language.iso | eng | none |
dc.publisher | Humboldt-Universität zu Berlin | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject.ddc | 510 Mathematik | none |
dc.title | Lyapunov 1-forms for flows | none |
dc.type | article | |
dc.identifier.urn | urn:nbn:de:kobv:11-110-18452/25925-3 | |
dc.identifier.doi | http://dx.doi.org/10.18452/23895 | |
dc.type.version | publishedVersion | none |
local.edoc.pages | 25 | none |
local.edoc.type-name | Zeitschriftenartikel | |
local.edoc.container-type | periodical | |
local.edoc.container-type-name | Zeitschrift | |
dc.description.version | Peer Reviewed | none |
dc.identifier.eissn | 1469-4417 | |
dcterms.bibliographicCitation.doi | 10.1017/S0143385703000762 | |
dcterms.bibliographicCitation.journaltitle | Ergodic Theory and Dynamical Systems | none |
dcterms.bibliographicCitation.volume | 24 | none |
dcterms.bibliographicCitation.issue | 5 | none |
dcterms.bibliographicCitation.originalpublishername | Cambridge Univ. Press | none |
dcterms.bibliographicCitation.originalpublisherplace | Cambridge, Mass. | none |
dcterms.bibliographicCitation.pagestart | 1451 | none |
dcterms.bibliographicCitation.pageend | 1475 | none |
bua.department | Mathematisch-Naturwissenschaftliche Fakultät | none |